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ABSTRACT

This thesis is focused on the theoretical study of the mechanical and electronic proper-
ties of two-dimensional (2D) crystals, such as graphene, and of layered materials based
on them, with emphasizes on both fundamental physics and on potential applications.
We start on the study of mechanical properties of free 2D crystals, moving then to
mechanical and electronic transport properties of 2D crystals, in particular graphene,
supported by a substrate. Then we move to layered structures formed by 2D crystals,
studying the phenomena of Coulomb drag and electronic vertical tunneling transport.

This thesis is split into two main parts. In the first one we study the mechanical
properties of 2D crystals, or crystalline membranes. We start by studying the effect
of anharmonicities and quantum fluctuations to the dispersion relation of the lattice
vibrations, in particular of out-of-plane vibrations, and how these affect the thermody-
namics properties of thermal expansion and specific heat. The we consider 2D crystals
supported by a substrate. We study the spectral properties of the out-of-plane vibra-
tions of the 2D crystal, when these are coupled to the lattice degrees of freedom of
the substrate. We also study how the thermal expansion of the 2D crystal cannot be
considered as an intrinsic property, but instead, becomes dependent on the substrate
that supports it.

In the second part of this thesis, we focus on electronic transport phenomena in 2D
crystals and layered structures. We pay special attention to graphene and graphene
based structures. We start by studying the limits imposed by electronic scattering by
lattice vibrations to the resistivity of graphene. In particular, we study the role of scat-
tering by in-plane and out-of-plane vibrations both in suspend and supported graphene
samples, comparing the relative importance of the two in both cases. Next we move
to electronic transport phenomena in layered structures. We study the phenomena of
Coulomb drag between two parallel arbitrary metallic layers. Then we specialize to
the case of drag between two graphene layers and study the effect of polar substrate
phonons to drag. We finally study the phenomena of vertical tunneling transport in
van der Waals structures, specializing graphene—hexagonal boron nitride—graphene ver-
tical structures. We study how lattice misalignment between the graphene layers and
simultaneous energy and momentum conservation in the tunneling process leads to the
occurrence of negative differential conductance in these devices. We then show that, by
controlling the relative alignment between the graphene layers and the boron nitride
slab, processes involving the transference of momentum by the boron nitride crystal can
lead to the occurrence of multiple negative differential conductance regions in the I-V
characteristics of the device. The effect of scattering by optical phonons of the structure
is also analyzed and we show that it opens up new inelastic tunneling channels, which
manifest themselves as sharp features in the low temperature I-V characteristics of the
device.
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RESUMEN

Esta tesis se centra en el estudio tebrico de las propiedades mecanicas y electrénicas
de cristales bidimensionales (2D), como el grafeno, y de estructuras en capas basadas
en ellos, con énfasis tanto en la fisica fundamental como en las aplicaciones potenciales.
Comenzamos con en el estudio de las propiedades mecanicas de los cristales 2D libres,
siguiendo luego con las propiedades mecanicas y electronicas de transporte de cristales
2D, en particular el grafeno, apoyados sobre un sustrato. A continuacién, pasamos a
estructuras en capas formadas por cristales 2D, estudiando los fenémenos de friccion
de Coulomb y transporte electrénico vertical por efecto de ttinel.

Esta tesis se divide en dos partes principales. En la primera estudiamos las propieda-
des mecéanicas de los cristales 2D, o membranas cristalinas. Empezamos por estudiar el
efecto de las no linealidades y las fluctuaciones cuanticas en la relaciéon de dispersion de
las vibraciones de la red, en particular, de las vibraciones fuera del plano, y como éstas
afectan las propiedades termodinamicas de la expansion térmica y el calor especifico.
A continuacion, consideramos cristales 2D apoyados sobre un sustrato. Estudiamos las
propiedades espectrales de las vibraciones fuera del plano del cristal 2D cuando éstos
estan acoplados a los grados de libertad del sustrato. También estudiamos cémo la ex-
pansion térmica del cristal 2D no se puede considerar como una propiedad intrinseca,
sino que depende del sustrato que la soporta.

En la segunda parte de la tesis nos centramos en los fenémenos de transporte elec-
trénico en cristales 2D y estructuras en capas. Prestamos especial atenciéon al grafeno
v a las estructuras basadas en él. Empezamos por el estudio de los limites impuestos a
la resistividad del grafeno por la dispersion electrénica causada por vibraciones de la
red. En particular, estudiamos el papel de la dispersiéon por vibraciones en y fuera del
plano, tanto en muestras suspendidas como en muestras apoyadas sobre un sustrato,
compararando la importancia relativa de los dos en ambos casos. A continuaciéon pasa-
mos a fenémenos de transporte electréonico en estructuras formadas por multiples capas.
Estudiamos los fenémenos de friccién de Coulomb entre dos capas metéalicas paralelas
arbitrarias. Después, nos especializamos en el caso de la friccién entre dos capas de gra-
feno y estudiamos el efecto de fonones de sustratos polares en la friccion. Finalmente
estudiamos los fenémenos de transporte vertical por efecto de tiinel en estructuras de
van der Waals, en particular estructuras verticales de grafeno—nitruro de boro hexago-
nal-grafeno. Estudiamos la forma como la desalineacién entre las capas de grafeno y
la conservacion simultanea de la energia y del momento en el proceso de tinel lleva a
la aparicion de conductancia diferencial negativa en estos dispositivos. A continuacion,
mostramos que, mediante el control de la alineacion relativa entre las capas de grafeno
y la losa de nitruro de boro, los procesos que llevan a la transferencia de momento por
el cristal de nitruro de boro pueden dar lugar a la aparicién de multiples regiones de
conductancia diferencial negativa en las caracteristicas I-V del dispositivo. El efecto
de la dispersion por fonones 6pticos de la estructura también se analiza y se muestra
que abre nuevos canales de tineles inelasticos, que se manifiestan marcadamente en las
caracteristicas I-V del dispositivo a bajas temperaturas.
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INTRODUCTION

The goals of Condensed Matter Physics are to unravel and tame new materials, new
phases and the phenomena that these display. By understanding the properties of
different materials, we can hope to harness their potential for practical applications.
In this respect, the isolation of graphene in 2004 [1| proved to be a pivotal moment in
Condensed Matter.

Graphene is an allotrope of carbon. It is formed by a single layer of carbon atoms
with an sp? hybridization that are arranged in a honeycomb lattice. It is essentially a
single layer of graphite and can be described as a two-dimensional (2D) material. While
graphene and its oxide have been observed before [2], the 2004 experiments where spe-
cial in that for the first time electrical properties of graphene where studied, revelling
graphene as a material with extraordinary electrical properties. Graphene displays the
curious feature that its low energy charge carriers behave as massless particles, with
their behaviour governed by a effective relativistic massless Dirac equation |3, 4]. But
that was not all. Besides its electrical properties, graphene was also shown to be a
material with extraordinary optical, mechanical and thermal properties. Graphene was
shown to a have a nearly constant optical absorption in the visible range [5| and to
supported highly localized electromagnetic modes, surface plasmons, in the terahertz
regime [6]. Graphene is the stiffest material measured to date [7]. Graphene has an
extremely high thermal conductivity [8], which in conjunction with its high thermal
conductivity makes it extremely promising for electronic applications. All these ex-
traordinary properties more than justify the continued attention that graphene has
received for more than a decade now. But what truly makes graphene a paradigm
changer in Condensed Matter, is the fact that graphene was the first in a family of
many other 2D materials.

Soon after the isolation of graphene, several other 2D materials where isolated, in-
cluding monolayers of hexagonal Boron Nitride (hBN), several transition metal dichalco-
genides [9] and black phosphorus [10]. These 2D materials come in a variety of flavours:
while graphene is a semimetal (zero bandgap material with a vanishing density of states),
hBN is a highly insulating material, transitional metal dichalcogenides can be either
semiconducting or metallic and black phosphorus is an highly anisotropic semiconduc-
tor. Recently it was also verified that the metallic transitional metal dichalcogenide
NbSesz, a material which in its bulk form displays transitions in charge density wave
and superconducting phases, also displays the same phases in its monolayer form [11].
Graphene was, therefore, the herald of a new field of research in Condensed Matter:
the study of 2D materials.

Besides the great variety of properties that 2D materials present, arguably one of
the their most interesting features, when compared to usual bulk three-dimensional
(3D) materials, is the possibility to easily tune those same properties. Due to the
low dimensionality of these materials, their properties can be easily tuned by external
parameters. This was made made clear in the early stages of research of graphene [1],
where the conductivity of graphene was shown to be easily tuned by electrostatically
controlling its density of states with a metallic gate. The all surface nature of these
materials also means that they can be easily modified by chemical methods [12-14].
Another strategy to modified the properties of 2D materials is based on the strong
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interplay between the electronic and the lattice degrees of freedom in 2D materials.
By applying, in a controlled way, strain in a 2D material, it is possible to tune its
electronic properties in a continuous way. This led to the development of the field of
strain engineering [15, 16]. By controlling strain it was shown that effective pseudo-
magnetic fields can be generated in graphene, which can give origin to Landau levels
[17]. The field of strain engineering also extended to other 2D materials, particularly to
semiconducting transition metal dichalcogenides (STMDC) and black phosphorus [18],
where strain can be used to control the band gap of these materials allowing a tuning
their electronic and optical properties.

This ease in externally controlling the properties of 2D materials comes, however,
with a price. The reasons that make 2D materials easily tunable also make them
extremely susceptible to the surrounding environment. Therefore, properties which in
bulk materials are generally though of as being intrinsic, in 2D materials will be sample
dependent. We will see several examples of this fact in this thesis.

A prime example of this sample dependence are the elastic properties of 2D materials.
Strictly speaking, a 2D free crystal does not have well defined elastic constants. As
a matter of fact even the mere existence of flat 2D crystals was doubted for a long
time [19-21], as violent thermally activated fluctuations were expect to destroy the 2D
crystalline order. It was, however, understood that a weaker form of order can still be
defined, which still gives origin to Bragg peaks in a scattering experiment [22]. Never-
theless, thermally activated thermal fluctuations still have drastic consequences in 2D
crystals. This is specially true in free flat crystals. In a 2D crystal, the long wavelength,
low energy lattice vibrational modes can be split into in-plane and out-of-plane modes.
While the dynamics of in-plane modes can be understood in terms of central forces,
which lead to the usual linear relation between frequency and wavenumber; for out-
of-plane modes the restoring force can only be described at microscopic level in terms
of bond-bending forces. This microscopic bond-bending forces are translated to the
macroscopic level to a restoring force that is proportional to the local curvature of the
2D crystal. This modifies the linear dispersion of the out-of-plane modes from linear
to quadratic in wavevector. Since the restoring force that governs the dynamics of the
out-of-plane modes being due to a bending energy, they are generally refereed to as
flexural modes. The low energy of flexural modes means that that can be easily excited
with temperature leading to even stronger fluctuations than the ones due to in-plane vi-
brations. These strong fluctuations lead to a break down of the superposition principle
for lattice vibrations and anharmonic coupling between in-plane and out-of-plane mo-
tion must be taken into account 23, 24]. It was shown that this anharmonic coupling
between lattice vibrations makes the elastic constants of a 2D crystalline membrane
strongly scale dependent and should actually vanish in the limit of an infinite crystal!
[25, 26] This mechanism is universal, being valid for any 2D crystal. In particular it
should also apply to graphene which is a prototypical crystalline membrane. This fact
is clearly at odds with the statement that graphene is the strongest material ever mea-
sured. However, graphene samples are never infinite. Furthermore, graphene samples
are not free, but are typically supported by a substrate or suspended over a trench.
In all of these cases, long wavelength flexural fluctuations should be suppressed and a
finite value for the elastic constant of graphene will be possible. This value should be,
however, sample dependent. So far no dependence of the elastic constants of graphene
on sample size has been observed. However an anomalous increase of graphene Young
modulus with defect concentration [27] and strain application [28] has been observed,
which has been interpreted in terms of suppression of anharmonic fluctuations. Another
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related problem is the role played by quantum fluctuations to the elastic properties of
2D crystals. This should be particular important in light and strong materials, such as
graphene, which have high Debye temperatures, meaning that at room temperatures
quantum fluctuations cannot be neglected. We will see in this thesis that anharmonic
fluctuations driven by zero temperature quantum effects can contribute to a recon-
struction of the dispersion relations of flexural modes, having direct consequences in
thermodynamic properties of a free 2D crystal.

2D crystals have the peculiarity that they tend to contract, rather than expand,
with increasing temperature. This phenomena of negative thermal expansion is not
exclusive to 2D materials (notably water also displays it), but in 2D crystal it is a
direct consequence of the quadratic dispersion relation of flexural vibrations and of
their coupling to in-plane modes. This effect is generally refereed as the membrane
effect having been predicted for a long time [29]. Layered materials, such as graphite,
which can be seen as stacked 2D crystals, also inherit the property of negative thermal
expansion in the directions parallel to the material basal plane [30]. In graphene, neg-
ative thermal expansion has been observed both in suspended samples and supported
samples. In suspended samples, the thermal expansion was found to the negative up
to temperatures of 350 K, with a room temperature value of —7 x 1076 K1 [31]; while
in supported samples, thermal expansion was found to the negative in the temperature
range of 200-400 K, with a room temperature value of —8 x 107¢ K~! [32]. Once again,
this suggests that the thermal expansion of graphene, and more generically of any 2D
crystal, is not an intrinsic quantity but is instead sample dependent. Further evidence
for this was presented in Ref. [33], where it was shown that the thermal expansion
of supported graphene samples depends on the interaction between graphene and the
substrate. In this thesis, we will see how the coupling between a substrate and a 2D
crystal leads to a reconstruction of the spectral weight of the 2D crystal flexural mode,
which in turn will affect the low temperature negative thermal expansion.

Another example of the dependence of properties of 2D materials to the external
environment is the electrical conductivity of graphene. There are drastic changes to be
mobility of charge carriers between supported [34] and suspended samples [35]. This
as been attributed to the different scattering mechanics that dominate scattering in
the different samples. In suspended samples, scattering by flexural modes has been
identified as a dominant scattering mechanism at room temperature [35]. Scattering
by flexural phonons in materials with mirror symmetry along the basal plane is always
a two phonon process leading to a dependence of the resistivity quadratic with tem-
perature. The scattering rate is dominated by long wavelength flexural modes being
divergent for phonons with a quadratic dispersion relation. Therefore, scattering by
flexural phonons in graphene samples will be extremely sensitive to any perturbation,
such as in-plane stresses [35-37]. We will see how the spectral reconstruction of the flex-
ural mode of graphene supported by a substrate affects electronic scattering by these
modes. Coupling to a substrate will severely quench the flexural modes leading to a
suppression of the flexural phonon limited resistivity in graphene samples.

It is also possible to use 2D materials to form layered structures [38, 39]. A par-
ticularly important example of these kind of structure is the graphene double layer
separated by an insulator. These structures display the phenomena of Coulomb drag
[39-41], which consists in the build up of a voltage across a metallic system due to a
current driven in a second nearby metal. This phenomenon is not new in itself, hav-
ing been observed in semiconducting double quantum wells [42-46]. We will also see
that for highly doped graphene layers separated by a large distance, Coulomb drag
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between graphene layers is actually very similar to Coulomb drag between semicon-
ducting double quantum wells. However, structures based on 2D crystal allow for the
study of Coulomb drag for layer separations previous unattainable [41]. More impor-
tantly, Coulomb drag in graphene double layers shows that different 2D crystal can be
combined to build devices displaying new properties and effects.

One of the most exciting developments in the field of 2D materials, is the possibility of
creating hybrid structures by stacking - or growing - different 2D crystals on top of each
other [38]. The different layers are held together by weak van der Waals (vdW) forces
and for these reason, this structures are generally referred to as vdW structures. By
combining different 2D crystals, with different properties, and controlling their stacking
order one can tailor the properties of the vdW structure at will and, by doing so, can
create materials on demand [47]. One can for instance imagine that by combining a 2D
(semi-)metallic material with another one which is insulating/semiconducting one can
create a structure which can operate as a switch. This has been realized by sandwich-
ing a few layers of hBN between two graphene layers. This graphene-hBN—graphene
vertical structure was shown to operate as a Vertical Tunnelling Field Effect Transis-
tor (VIFET) [48, 49]. The same kind of device has also been realized by replacing the
hBN layers by the STMDC WSe; leading to an increase in the ON/OFF ratio by a
factor of 102 [50]. A particularly important aspect of vdW structures is the fact the
interfaces between different layers displays an extremely high quality, being atomically
sharp [51]. This will lead to the conservation of the in-plane momentum of charge
carriers during the tunnelling process, which will be sensitive to the relative alignment
between different layers. This dependence of the tunnelling on the layer alignment has
been exploited to create graphene-hBN—graphene devices displaying negative differen-
tial conductance (NDC) [52, 53]. Besides all the possible ways to tune the properties
of 2D materials, in vdW materials crystal alignment between different layers provides
yet another route to give origin to and tune material properties.

1.1 STRUCTURE OF THIS THESIS

This thesis is divided into two parts. Part i deals with the mechanical and thermody-
namic properties of generic 2D crystals, or crystalline membranes. Part ii deals with
electronic transport phenomena in 2D crystals and in layered materials formed out of
these.

Part i is split into two chapters. Chapter 2 discusses the role played by anharmonic
effects on the physics of free crystalline membranes in the low temperature limit. We
start by discussing what is meant by crystalline order in two dimensions. Then we
make a brief review of the classical theory of free crystalline membranes, discussing
the effect of anharmonicities on the elastic constants of the membrane. We proceed by
quantizing the theory in order to study the effect of anharmonicities in the low tem-
perature, quantum regime. We give special attention to the anharmonic corrections to
the dispersion relation of the flexural phonon and to the thermodynamic properties of
thermal expansion and specific heat. In Chapter 3, we shift the focus from free mem-
branes to membranes supported by a substrate. We consider the effect of the coupling
between the membrane and the bulk substrate on the membrane lattice vibrations, spe-
cially on the membrane flexural mode. We focus on the dispersion relation and spectral
properties of the flexural mode, taking into account the dynamics of the substrate and
comparing theory with High Resolution Electron Energy Loss Spectroscopy (HREELS)



1.1 STRUCTURE OF THIS THESIS

measurements. We also see how coupling to the substrate makes the thermal expansion
of the membrane substrate dependent.

Part ii is split into three chapters, each devoted to a different electronic transport
phenomenon. In Chapter 4, we study the effect of acoustic phonon scattering to the
resistivity of graphene. We focus on both scattering by in-plane acoustic phonons
and also by flexural phonons. In particular, by using the results of Chapter. 3, we
study the effect of scattering by flexural phonons when graphene is supported by a
substrate. In this chapter we also make a brief introduction to the description of
graphene low energy electrons in terms of a massless Dirac equation. This overview
also provides the basis for the subsequent two chapters. In Chapter 5, we study the
phenomena of Coulomb drag between two metallic layers. We discuss Coulomb drag
between layers with arbitrary electronic dispersion relations and arbitrary intralayer
scattering mechanisms, establishing the dependence of the drag resistance as a function
of temperature, layer separation and electronic densities. Next we specialize to the
case of Coulomb drag between two graphene layers. We also study the role played by
substrate longitudinal optical phonons on drag. Finally, in Chapter 6, we study the
vertical tunnelling current between two graphene layers separated by few layers of hBN.
We study the tunnelling current for small lattice misalignments between the graphene
layers and the graphene layers and the hBN slab. We analyse how transference of
momentum by the hBN crystalline structure to the tunnelling electrons can lead to the
occurrence of multiple NDC regions. We also study the effect of inelastic scattering by
optical phonons to the tunnelling current.

At the end of this thesis several appendices can be found. These appendices play
three roles: (i) setting definitions for quantities used throughout the main text, (ii)
contain technical details for proofs or lengthier calculations whose results are simply
stated in the main text, and finally, (iii) acting as a short exposition for some of the
techniques and formalisms employed in this thesis. Regarding this last point, this thesis
makes heavy use of Green’s functions techniques to many-body problem in Condensed
Matter, a topic for which many excellent text books have been written. In my work
during this thesis I have found Refs. [54] and [55] to be excellent books on the use
of equilibrium Green’s functions techniques in Condensed Matter and Refs. [56] and
[57] to be excellent books for the non-equilibrium case. Therefore, Appendices A, C,
B and H are to be seen just as quick references. All of the definitions used in this
thesis regarding Green’s functions, both in real and imaginary time, are provided in
Appendix. A. Throughout this thesis, during intermediate steps we will usually work in
units where A, the reduced Planck constant, is set to 1, only restoring A when presenting
final results.
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FREE QUANTUM CRYSTALLINE MEMBRANES

2.1 INTRODUCTION

The existence of 2D crystals has been a topic of debate. It was argued by Peierls [19]
and Landau [20] that infinite strictly 2D crystals (with no atomic motion along the
out-of-plane direction) where thermodynamically unstable at any finite temperature.
Crystalline order in 2D would be destroyed by long wavelength thermally activated
acoustic phonons, which would give origin to large amplitude fluctuations of the atoms
around their equilibrium positions. This argument was formalized by Mermin [21],
who proved, in a rigorous way, that there can be no conventional long-range crystalline
order in two dimensions. As such, there seems to be a contradiction between theory
and experimental observation, which tells us that 2D crystals exist. In fact no such
contradiction exists. First of all, as pointed out by Gunther [58] and by Mermin himself
[21], the average square amplitude of the fluctuations for a large, but finite, 2D crystal
only grows logarithmically with the linear size of the sample. Namely, using a harmonic
elasticity theory and employing the equipartition theorem, it is easy to show that

u?)  kgT (1 1 L
<a2> ~ %LM (7% + U%> log <a> , (2.1)
where u is the atomic displacement variable, T' is the temperature, kp is Boltzmann
constant, M is the mass of the atoms, vy, /7 is the longitudinal /transverse sound velocity
of the 2D crystal, a is the lattice parameter, L is the linear size of the sample and (...)
represents a thermodynamic average. Therefore, even if we have a very large 2D crystal,
log(L/a) can still be relatively small. As an example, using typical graphene values, see
Table 2.1, for a flake with linear size of 10 um at 300 K we would obtain (u?) /a? ~ 0.2%.
Secondly, and most importantly, one must be careful in what is meant by 2D crystalline
order. Peierls’ argument consists in studying the displacement correlation function

<(u(x) — u(O))2>. Once again employing the equipartition theorem one obtain

x| ! , in 3D

u(x) — u(0))?) ~ :
<( > o) > log (|x| /a) ,in 2D

(2.2)

and therefore, while in a three-dimensional (3D) crystal the displacement correlation
function goes to zero for large separations, in 2D it grows logarithmically. Mermin’s
paper defined crystalline order in terms of the Fourier transform of the atomic density,

(pa) = 1 3 (7R, (23)

with N the number of atoms which are at positions R,,, as a phase in which (pq) is non-
zero when q is a reciprocal lattice vector, G, and zero otherwise. Mermin’s analysis
showed that for large but finite systems (pg) < (log N )_1/ 2 which vanishes in the

thermodynamic limit. However, crystalline order is not experimentally characterized
by either <(u(x) - u(O))2> or (pq), but instead by the observation of Bragg peaks
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in a scattering experiment. The signal observed in a x-ray scattering experiment is
proportional to the structure factor

Sa) = 1 3 (erta ), (2.4)

n,m

where q is the transferred wavevector. If the atomic positions are frozen at the lattice
sites, S(q) presents a J-function like divergence in the thermodynamic limit when g
is a reciprocal lattice vector (S(G) = N) , and averages to zero for any other generic
wavevector. Writing the atomic positions as R,, = R2 + u,,, where RY are the equilib-
rium positions of the frozen crystal and u,, are the displacements around that configu-
ration, for an harmonic crystal using the general property of Gaussian integration

Z(b) :/d[m]e—ém-Mm—l-bm
= z(O)e%b'@“’)o'“’, (25)

where (zx), = M !, the structure factor reads

S(q) = ]1] Ze—z‘q-(R%—R%)e—%Q’qJ<(%—%)(u%—uj ). (2.6)
n,m

From the above equation and Eq. (2.2), one can see that in 3D the decay of the

displacement-displacement correlation function with the distance as |x|71 ensures that,

in the thermodynamic limit, S(q) diverges for ¢ = G and is zero for any other wavevec-

tor. For the 2D case, it was showed by Jancovici [22] that S(G) will still diverge in the

thermodynamic limit for temperatures T' < Tg with T given by

_ kBAcell 2 1 1
T ~ G| =+ = 2.7
G 8t M G| v%+v?p ’ (2.7)

where Acqp the area of the unit cell. For wave vectors close to a reciprocal lattice vector
G, instead of a d-function-like divergence, S(q) presents a power law divergence [59]

S(a) ~ g — G| 20 T/Te), (2.8)

Therefore, a purely 2D crystal still displays Bragg peaks in a scattering experiment
and it is in this sense that it is possible to talk about 2D crystals. The observation of
sharp Bragg peaks characteristic of a 2D crystal was observed in Xe atoms absorbed
on a graphite surface [60]. In this system the Xe atoms form a triangular lattice weakly
coupled to the graphite substrate. At low temperature, power law peaks characteristic
of a 2D crystalline phase were observed and above a certain temperature, these peaks
become less intense and broader, indicating that the system has transitioned into a
liquid like phase.

Having settled that such a thing as a purely 2D crystal can be defined, we now turn
our attention to crystalline membranes. A membrane is a two dimensional object that
is embedded in three dimensions. Therefore, differently from a purely 2D crystal, a
membrane can also fluctuate in the out-of-plane direction. For a free membrane not
subject to any external stress, these fluctuations can lead to the destruction not only
of the in-plane order but also make the flat configuration unstable, in which case the
membrane becomes crumpled. The issue of the stability of a flat phase in membranes
and the physics of the crumpling transition were extensively studied in the late 80’s
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[23, 25, 26, 61-68|. It was found that in crystalline membranes, membranes with an
internal structure which gives rise to a finite shear modulus (also referred to as solid,
tethered or polymerized membranes), anharmonic effects can make such a flat phase
stable at low enough temperatures.

It was found that in the flat phase, the coupling between in-plane and out-of-plane
displacements and their corresponding large fluctuations make the flat phase strongly
anharmonic and anomalous [23]. In-plane elastic constants become scale dependent,
vanishing for large length scales, while in the same limit the scale dependent bending
rigidity grows. While the growth of the bending rigidity at large scales protects the
flat phase against fluctuations, the reduction of the in-plane elastic constants makes
in-plane order less well defined. This softening of the in-plane elastic constants in free
crystalline membranes leads to a further suppression of Bragg peaks, which become
just oscillations in the structure factor with the periodicity of the reciprocal lattice
space, showing that while in-plane translational order has been destroyed, long range
orientational order is still preserved [69-71].

Graphene and other 2D crystals are atomically thin, while displaying an in-plane
structure due to the covalent bonding between atoms. While samples supported by
a substrate or encapsulated between bulk materials are closer to a purely 2D crystal
than a free membrane!, suspended samples [72-75] appear as prototypical crystalline
membranes. Suspended 2D crystal give origin to broadened but well defined Bragg
peaks in scattering experiments [72-74]. The fact that the Bragg peaks are well defined
is most likely due to stabilizing effect of the clamped edges of the sample, while the
fact that these are broadened is due to static corrugations that the sample displays.
The exact origin of these corrugations is still not clear. Corrugations might either be
intrinsic, having its origin in an instability due to electron-phonon or anharmonic effects,
or extrinsic, being caused by residual stresses induced by the edges, fabrication process
or adsorbed impurities [76]. Most importantly, while graphene has been reported as the
stiffest material ever measured [7], suspended graphene was later found to display very
anomalous mechanical properties. Suspended graphene samples were shown to become
stiffer when vacancies are induced [27] or when an external stress is applied [28]. This
behaviour has been interpreted as due to a suppression of anharmonic effects, which as
previously said, lead to a softening of the in-plane elastic constants.

Therefore in order to properly understand the mechanical properties of 2D crystals,
one must take into account anharmonic effects. However, the standard descriptions of
anharmonic effects in flat crystalline membranes [24] is a classical theory, mostly aimed
at describing biological and lipidic membranes. A simple estimation of graphene’s
Debye temperature gives us Tp ~ 1000 K and as such it is doubtful that a classical
theory is suitable to describe the lattice dynamics of graphene and other 2D crystal
even at room temperature. It is therefore necessary to perform a study of anharmonic
effects within a quantum mechanical approach.

In this chapter, we study the properties of flat crystalline membranes in the low tem-
perature, quantum regime, analysing how anharmonic effects lead to a reconstruction
of the dispersion relations of acoustic phonons and how this impacts thermodynamic
properties in the low temperature limit. The chapter is organized as follows. In Sec-
tion 2.2 we make a brief review of the standard classical theory for flat crystalline
membranes, which will pave the way for the discussion of quantum effects (for a more
general an in-depth discussion on the physics of classical membranes the reader is re-

We will see in the next chapter that coupling to the substrate quenches the out-of-plane displacements
and strongly hybridizes them with substrate modes
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ferred to Refs. [24, 77, 78]). The classical theory of crystalline membranes is quantized
in Section 2.3. The effect of anharmonicity in the dispersion relation of long wave-
length acoustic phonons is studied. In Section 2.4, the effect of anharmonicity in the
the low temperature thermodynamic properties of thermal expansion and specific heat
is studied. Finally, in Section 2.5 the results of this chapter are analysed and discussed.

2.2 REVIEW OF THE CLASSICAL THEORY OF FREE CRYSTALLINE MEM-
BRANES

Within the description of lattice dynamics, the degrees of freedom are the positions of
the atoms that form the crystal. We label the atoms by an index n and each atom
has a position given by ﬁn, a 3D vector. The theory describing the crystal must be
invariant under rigid translations and rotations of the atomic positions. Therefore,
the classical Hamiltonian can only the a function of inner products of quantities like
R, — Ron. Focusing on low energy, long wavelength properties and assuming that the
forces between atoms are short ranged we can use a continuous description of the crystal.
To do this we consider a virtual reference crystal with atomic positions given by x,
and label the atomic positions R, by this reference position, which is promoted to a
continuous variable, x, — x. Assuming R, varies smoothly, which will be true for
acoustic lattice vibrations, we can write Ry — Ry ~ Tﬁ}mﬁiﬁ(x), where T, 1 = X5, — X,
and the latin indice runs over the spacial dimensions of the membrane. We are using
Einstein’s convention, with summation over repeated indices implied. To lowest order
in 9;R(x) and its derivatives, Paczuski, Kardar and Nelson [64] proposed the classical
Hamiltonian to describe 2D crystalline membranes?

1 » - R
HprxN = 3 /dQXHZ]klaiajR'akalR
1 k(s s I
+3 / xc M (0, - 0 — 5i5) (O - O — o) (2.9)

where the first term is a bending energy term, describing resistance of the membrane
to being curved, with x* the bending rigidity tensor; and the second is a stretching
energy term, describing resistance of the membrane against in-plane compression/ex-
tension and shearing, with ¢* the stiffness, or elastic moduli, tensor. These tensors
obey the symmetries

Ikl — cklij _ ikl (2.10)

and similarly for %, Equation (2.9) is clearly invariant under rigid translations and
rotations of the R(X) variables. The structure of the tensors x* and ¢“* depends on
the underlying symmetries of the membrane’s crystalline structure. We will focus on
crystalline membranes with hexagonal symmetry, such as graphene, in which case ¢/
must have the form [79]

Gkl = gl gkl 4, (5ik5jl n 5il5jk> 7 (2.11)

where A and p are 2D Lamé coeflicients. We point out that this form of the elastic
moduli tensor is the same as for an isotropic system. For a system with hexagonal

Originally this Hamiltonian was proposed to study the crumpling transition of a generic membrane
with D dimensions embedded in a d dimensional space. We will restrict ourselves to the physical case,
D =2andd=3.
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symmetry 7% must have the same form as Eq. (2.11), but by using integration by

parts and ignoring surface terms we can write
KR = 51 §M. (2.12)

For a flat membrane, it is possible to write the position of the atoms in a Monge
representation as

R(x) = (x + u(x), h(x)) (2.13)

where x is the equilibrium position of the atom, u(x) is the in-plane displacement
vector and h(x) is an out-of-plane displacement. Therefore, Eq. (2.9) becomes

1 g
HPKN = 2/d2X (Ii [(6211)2 + (th)Q} + CZ]kle’fijEkl) . (2.14)
where €;; is the full strain tensor
1
€ij = 5 (8111] + 8jui + 8Zh8]h + ou - 8ju) . (2.15)

When studying the flat phase of the membrane it is a common approximation to neglect
the bending contribution from the in-plane phonons, (82u)2, and the quadratic term in
u in the strain tensor Eq. (2.15) [23, 66]. Doing this one obtains the thin plate classical
Hamiltonian )
H [u, h] = 5 /d2X (H (82h)2 + Cijkl’yij’)/kl> s (2.16)
with .
Vij = 5 (O + Ojui + 0;hdjh) (2.17)

the relevant strain tensor. Notice that in Eq. (2.16), and (2.14), the out-of-plane
displacement field only occurs in even powers. This is due to the fact that a flat
membrane is invariant under the mirror symmetries z — —z. We also point out that
the classical Hamiltonian Eq. (2.16) has the same form as Landau’s free energy for thin
plates [79]. However, one should notice that while for a thin plate the bending rigidity
is related to the Young’s modulus, Y3p, and Poisson’s ratio, v3p, of the bulk material
and to its thickness, Ah, by

Ysp (Ah)?

= —_— 2.18
: for plates 12 (1 — V32D) ’ ( )

no such relation should exist for a crystalline membrane, as it is not possible to properly
define the thickness of a 2D crystal. Therefore, in a crystalline membrane, the bending
rigidity and the in-plane elastic constants are to be understood as independent param-
eters. Equation (2.16) is the minimal model that includes the coupling of in-plane and
out-of-plane displacements and is the starting point for the study of anharmonic effects
in a membrane. But first, we will analyse the harmonic theory.

2.2.1  Harmonic theory

A crystalline membrane supports three acoustic lattice vibration modes: two in-plane
modes, which in an isotropic membrane can be classified as longitudinal and transverse,
and one out-of-plane mode. In order to study these modes at harmonic level, we neglect

13
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e[V | AV A eV A | wp [mys] | o [mys] |
T=0K 0.82 3.25 9.44 2.15 x 10% | 1.41 x 10*
T=300K | 1.1 2.57 9.95 217 x 10% | 1.44 x 10*

Table 2.1: Typical elastics constant for graphene at T = 0 and at 7" = 300 K. Taken from
Ref. [80]. The in-plane phonon velocities were calculated using a graphene mass

density of p/h? = 1104 VA2

the term 0;h0;h in Eq. (2.17), such that the classical Hamiltonian Eq. (2.16) becomes
quadratic in the displacement variables reading

Ho [u, h] = 5 /d2X (IQ (82h)2 + A (81u1)2 + u (aluj@u] + &ujajuz)) , (2.19)

and the in-plane and out-of-plane displacement variables are completely decoupled.
Writing the displacement fields in Fourier components

h(x) = \/IZ > elhg, (2.20)
q

i 1 iq-X, T
u'(x) = 7 gezq Ug, (2.21)

where A is the area of the membrane, the quadratic Hamiltonian is given by

1 o
Holu,h] = 5 3" (klal* hahq + [+ ) 8 o> + paig;| wgel ) . (222)
q
We define the equal-time classical phonon correlation functions as
DYy = (hqh—q)y- (2.23)
DY = <uguf_ q>0 : (2.24)

where where (...), represents a classical thermodynamic average with respect to the
Hamiltonian Eq. (2.19), which is defined as

[ D[u,h]..e”FHolwhl
<>0 - f D [u’ h} ef/B'HO[qu] ’

(2.25)

with 3~ = kpT, and D [u, h] is the functional integration measure. Since Eq. (2.19) is
quadratic, using Gaussian integration we obtain, in accordance with the equipartition
theorem,

kT

DY, = 2 (2.26)
»a K |q|4
Dgi{q = D%»Q‘qu + D%QP%J,CI’ <227)

where, using isotropy, we have decomposed Dy;’q into longitudinal and transverse com-

ponents, with respect to the direction defined by the wavevector q, and introduced the

longitudinal /transverse projectors Pz] IT.q

j N o di
q27 P%Jq:w_qqm
[<1 ’ [¢]

Py, = (2.28)
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and D% T,q BTC the correlation functions for the longitudinal /transverse in-plane dis-

placements

‘DL = 5 T - —5.
(A +2u) g 4 gl

From Eq. (2.22) one can also obtain the dynamics of the displacement field. Accord-
ing to the Euler-Lagrange equations we have

(2.29)

. 0Ho
ha = — 2.
p q 5h7q, ( 30)
0Ho
= —— 2.31
puq 6uz_q’ ( )

where p is the mass density of the membrane. Therefore, we obtain the dispersion
relations for the out-of-plane, flexural or some times capillary, phonons

K
Wrq = \/; jal, (2.32)

while for the in-plane longitudinal and transverse phonons we obtain

wrq = velal, (2.33)
wrq = vrldql, (2.34)
where v, = /(A 2u) /p and vp = /p/p are the in-plane longitudinal and trans-

verse sound velocities. Typical graphene values for the bending rigidity, in-plane Lamé
coefficients and sound velocities are provided in Table (2.1).

Using these results we obtain that for the harmonic theory, in-plane correlation func-
tions behave just like in the case for a purely 2D crystal. For the out-of-plane fluctua-
tions we obtain

d’q

2
() = 1(0)%) =2 [ % (hah—a)y (1 - cos ()
o~ ") @n)
d’q
~9 / 9 )

2 \lqft—q
2r/|x| (27)

~ x|, (2.35)

The fact that the the out-of-plane displacement between two points of the membrane
scales linearly with their separation, shows that a flat phase within the harmonic theory
is impossible and the membrane is always in a crumpled phase. If one also looks at the
local normal of the membrane which is approximately given by n(x) ~ e, — Vh(x), the
normal-normal correlation function reads

(nx)— m(0)72) =~ 2 [ DU 1g2 (hh_ )y (1 - cos(a-x)
: (2m)
~ log (\xl) . (2.36)

a

and therefore there is also no long range out-of-plane orientational order. We will see
that inclusion of anharmonic effects fixes this pathology.
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(a) (b)

Figure 2.1: Diagrammatic Feynman rules for the anharmonic theory of crystalline membranes:
(a) interaction vertex for the cubic interaction of Eq. (2.38); (b) interaction ver-
tex for the quartic interaction of Eq. (2.39); (c) effective quartic interaction be-
tween out-of-plane displacements, Eq. (2.44). The solid straight and wavy lines
represents, respectively, in-plane and out-of-plane displacement propagators. The
dashed straight line represents the quartic interaction of Eq. (2.39) and the coil
shaped line represents the effective quartic interaction of Eq. (2.44).

2.2.2  Anharmonic effects

Notice that the inclusion of the term 0;h0;h in the relevant strain tensor v;;, Eq (2.17),
makes the classical Hamiltonian Eq. (2.16) an interacting one. We can split the inter-
acting Hamiltonian as

H [u, h] = HO [u, ]+ H) [u,h] + Hi) 1], (2.37)
where Hj [u, h] is the quadratic part of the Hamiltonian, given by Eq. (2.19) or (2.22),
and H®)

ot [u, h] together with i) [h] are interaction terms which read

int

7‘[~(3) [u, h] = ;/dZXCijklain (8khalh) s (2,38)

int

H® (1] = % / dxcT (9,h0;h) (Deharh) (2.39)

The term 7—[1(32 [u, h] is a cubic interaction term that couples the in-plane displacement

field with the out-of-plane displacement field and ’Hl(ét) [h] is a quartic interaction in-
volving only the out-of-plane displacements. These interaction terms are represented
diagrammatically in Fig. 2.1(a) and (b). The partition function of the membrane is
given by

Z = / D [u, h] e PHuhl, (2.40)

Notice, that although # [u, h] describes an interacting system, it is still quadratic in
the in-plane displacement field. In this situation it is possible, and useful, to integrate
out the in-plane displacements exactly, in order to obtain a theory that only involves
the out-of-plane displacements [23]. Using the general property of Gaussian integration
Eq. (2.5), it is possible to write the partition function of the membrane as

Z = Zuo / D [n] e~ PHesll], (2.41)
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where Z,, o is the partition function for the non-interacting in-plane displacement, which
is just an unimportant multiplicative factor, and Heg [h] is the effective classical Hamil-
tonian for the out-of-plane displacements, which reads

Hegp 1] = HO [1] + 1Y (1], (2.42)

where H(©) [h] is the part of #(%) [u, h] only involving the out-of-plane displacement and
Hgff) [h] is the effective interaction Hamiltonian which reads

%gg [h] = é / d*x / d*x’ (9;hdjh) (x)RU* (x, ') (Oxhdjh) (X)), (2.43)

where the effective quartic interaction between the out-of-plane displacements is given
by

Rijkl(x’ X/) _ cijkl5(2) (X o X/>

— T (g () (x7) ) R (2.44)

with i (x) = (9juj(x) + 0jui(x)) /2 the linear strain tensor and (u;;(x)up(x’)), its
corresponding correlation function. The effective quartic interaction is represented di-
agrammatically in Fig. 2.1(c). The first term of R¥* (x,x’) corresponds to the local
quartic interaction from Eq. (2.39), while the second term corresponds to a non-local
interaction that is mediated by the in-plane displacements. In terms of Fourier compo-
nents Eq. (2.43) is given by

MY = S RE (a4 )05 (4~ )y dhaiphoabaqphoq  (249)

9.9',p

with the effective interaction written in Fourier components as
g g oy -
ngl = C’L‘jkl — Cl]Z J <ui/j/7puk/l/7_p>0 Ck L kl. (246)

It is important to treat the cases with p = 0 and p # 0 differently [24], which involve,
respectively, homogeneous deformations and fluctuating (phonon) displacements. First
we notice that according to general linear response theory, see Appendix B, the quantity
(uij,pukl’_p% is the response function due to an applied in-plane stress, Jf)j . Therefore,
in the presence of an applied in-plane stress, the in-plane displacement is given by

(uijp)o = (Uij.pUrt,—p)o Op- (2.47)

The p = 0 case describes the homogeneous distortion due to an homogeneous strain ten-
sor. The homogeneous stress-strain constitutive relation in linear elasticity is described

by the stiffness tensor, ¢/* as

o = My, (2.48)

The inverse relation is expressed in terms of the compliance tensor, Cz'_jllcl’ as
—1 _kl
Uij = Cipy0 (2.49)
with the compliance tensor defined as the inverse of the stiffness tensor,

_ 1
Cijilcklmn = 5 (611’)16]’!7, + 6zn5jm) . (250)
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(a) (b) %

Figure 2.2: Feynman diagrams contributing to the out-of-plane displacement self-energy to
lowest order in perturbation theory. (a) Fock diagram that leads to the self-energy
in Eq. (2.57). (b) Hartree diagram. This kind of diagram does not occur due to
the exclusion of the p = 0 case in Eq. (2.55).

For an isotropic 2D crystal the compliance tensor is expressed in terms of the Lamé

coefficients as N )
-1
= ———§5 — (0;10; 10k - 2.51
Czjkl 4#()\+M)5j5kl+4ﬂ (5k5]l+515]k) ( 5 )

Therefore, comparing Eqs. (2.47) and (2.49) we identify
<“ij,0ukl,0>o = ci_jlld. (2.52)
Therefore, we obtain
ngl = ¢kl _ ciji/jlci_,;,k,l,ck/l,kl =0. (2.53)

For p # 0, the in-plane strain-strain correlation function can be expressed in terms
of the phonon correlation functions Eqs. (2.29). Performing all the contractions, the
following result is obtained

Raa',p = ngl (¢ +Dp); 4 (q’ - P)k q
2
(axp)? (d x p)’
o> Ipl

= Yap (2.54)

where Yop = 4pu (A4 p) / (A + 2p) is the 2D Young modulus. Therefore, the effective
quartic interaction Hamiltonian, H((;lf) [h], can be written as

1 1 (axp)? (d x p)?
Hgﬁ) [h] = SA Z Yop 2 3 Naiph—qhg—ph-q- (2.55)
=l Il
p7#0

Due to presence of interactions in the classical Hamiltonian (2.37), the out-of-plane
correlation function is no longer given by Eq. (2.26), but is instead given by the Dyson
equation

Drq = Dyq — Dy oSEFqDra; (2.56)

where Dp q is the exact correlation function and X g4 is the out-of-plane displacement
self-energy, which encodes the effect of interactions. The inverse temperature factor was
introduced for latter convenience, when comparing with the quantum case. Since Dr q
only involves out-of-plane variables, we can use the effective interaction Hamiltonian
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£

Figure 2.3: Diagrammatic representation of the Nelson and Peliti SCBA for crystalline mem-
branes [23]. The double straight line represents the full out-of-plane correlation
function, D q. The self-energy is computed using the full out-of-plane correlation
function.

= -

(2.55) to compute Y pq. The lowest order contribution to the self-energy is given by
the Fock diagram represented in Fig. 2.2(a), which translates into

2 2
© _ Yop = (@xp); (@axp); .o
BZF,q A ]p|2 |p]2 ﬂDF,qﬂﬂ (2‘57)
p

The fact that the p = 0 case is excluded from Eq. (2.55) means that in a diagram-
matic perturbative expansion of the self-energy, Y q, Hartree diagrams, like the one
in Fig. 2.2(b), do not occur. Using Eq. (2.26) and transforming the sum in momentum
into an integration, the self-energy is computed yielding

d*p sin* Oq.p
2m)? k|q+ p|*

Egzq = Ysz?BT\OI|4/ (

_ 3YopkpT Iq?

2.58
167K ( )

The obtained self-energy behaves as |q|2, while the inverse bare propagator behaves as

-1
(D%,q> x \q\4. In order for perturbation theory to be valid, the self-energy correction

to the correlation function should be smaller than the inverse bare correlation function.
Therefore, Eq. (2.58) shows that at low enough momenta perturbation theory breaks
down and the crystalline membrane theory becomes strongly coupled. Using a Ginzburg
argument we can estimate the momentum scale, k., bellow which perturbation theory
breaks down by comparing [24, 81-83]

(D%.) "~ BS), . (2.59)

3YopkpT
ke 2\ —————. 2.60
V. 167k2 ( )

Using typical graphene values we obtain k. ~ 0.17 A™'. This cross-over momentum
also corresponds to a critical size of the membrane, L. = 27 /k., above which it will
display strong anharmonic effects. For graphene we obtain L. ~ 6 A.

In order to obtain a non-perturbative result, Nelson and Peliti [23] proposed a self-
consistent Born approximation (SCBA) theory for the out-of-plane propagator. Neglect-
ing dressing of the effective interaction Eq. (2.55), a self-consistent theory is obtained
by replacing the bare out-of-plane correlation function, D% atp’
in Eq. (2.57), obtaining

from which we obtain

by the full one, Dr qp,

Yap < (4 x p)? (q x p)?
62%’%BA = A |p’2 = ‘p|2 ZBDFJH-p? (2'61)
P
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S LLLLN

7000 4+

Figure 2.4: Diagrammatic representation of the SCSA for crystalline membranes. The double
straight line represents the full out-of-plane propagator, D 4, while the double coil
line, represents the screened effective quartic interaction, which is described by the
effective Young’s modulus. These diagrammatic equations lead to Egs. (2.68) and
(2.69).

and using the Dyson equation (2.56) the full correlation function is given by

kgT

SR — (2.62)
lalt+ S

DF,q

The SCBA is represented in terms of Feynman diagrams in Fig. 2.3. In the light of the
perturbative result, Eq. (2.58), it is assumed that Xpq > & ]q]4 and it is furthermore
assumed a power law dependence of ¥ q on momentum, Xz q ~ ﬁqgh]q|4_77h, with n,
and anomalous exponent and ¢y some intrinsic momentum scale. Therefore, the full
correlation function is approximated by the self-energy contribution

kT
Dpg~ ———0—- (2.63)
kg™ lal” ™
Inserting the previous expression into Eq. (2.61), it is obtained
Mh | |4 TR Yap 2+np 4
Brgg" [l ~ o la[™ (2.64)

2mrg"

which can only be satisfied provided 4 — n, = 2 4 np, which gives us the Nelson and
Peliti result: n, = 1. The previous equation also implies that the momentum scale gq

must be of the order of [83]
YopkpT
~A 2.
W ~\ 53 (2.65)

This correction to the out-of-plane correlation function can be interpreted as a dressing
of the bending rigidity by anharmonic effects which make it momentum dependent. We
can therefore write

kT
—c
ket(q) |al
with the effective, momentum dependent, bending rigidity being given by

Dpg = (2.66)

ren(t) ~ (f;)n . (2.67)
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The SCBA neglects the effects of interactions to the in-plane elastic constants. These
can be seen as a screening of the effective interaction Eq. (2.55). Taking these effects
into account results in the self-consistent screening approximation (SCSA) [70, 84|

(axp)? (axp)
SCSA A Z 28[(;2? \p|2 |p\ “BDFq+p (2.68)

where the effective Young’s modulus is given by the screening equation

YZDZ((IXP) (axp)?

VISEAD) = Vao W) 2 30 LR R o D (269)

These equations are represented diagrammatically in Fig. 2.4. The SCSA equations,
Egs. (2.68) and (2.69) , must be solved self-consistently. But even without solving them,
some important information can be extracted from these equations. Assuming that for
long wavelengths we have a scaling behaviour

Dt =~ BEERY ~ g™, (2.70)
n%%<>~ jal™ (2.71)

where 7, is another anomalous exponent, and that the integral in Eq. (2.68) is domi-
nated by values with small p, from dimensional analysis it can be seen that Eq. (2.68)
is only compatible with Egs. (2.70) and (2.71) provided [70]

Ny = 2 — 2np. (2.72)

The same relation can be obtained from Eq. (2.69). We see that the Nelson and Peliti
result, n;, = 1, implies 1, = 0, as it should since that result was obtained ignoring pos-
sible screening effects. The relation between exponents Eq. (2.72) is the particular case
of a more general result for a D—dimensional membrane embedded in a d-dimensional
space (d > D): n, = 4— D —2n;, |25, 66]. The SCSA equations were solved analytically
in the scaling limit [84] yielding a value of n, ~ 0.821, which through Eq. (2.72) implies
7y =~ 0.358. These exponents have also been computed using perturbative renormal-
ization group calculations [66], functional renormalization group calculations [85-88],
molecular dynamics [89] and Monte Carlo simulations [90-94] with obtained values for
np, ranging from 0.72 to 0.85. The anomalous momentum dependence of the effective
Young modulus is also shared by the in-plane elastic constants [66]. Therefore, as said
in the introduction of this chapter, in a free crystalline membrane anharmonic effects
make both the bending rigidity and the in-plane elastic constant momentum (or scale)
dependent as

Ker(aq) ~ [a| ™, (2.73)
Aeft(Q), pet(q) ~ |a|™, (2.74)

with both 7, > 0 and 7, > 0. This implies that the out-of-plane and normal-normal
correlation functions in real space scale with distance as

(b =h(0)*) ~ [xP7™, (2.75)
((on(x) = n(0))?) ~ x|, (2.76)
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showing that anharmonic effects lead to a suppression of the out-of-plane fluctuations
and restore the long range ordering of the local normals. At the same time, in-plane
ordering is further destroyed and instead of the logarithmic behaviour of the in-plane
correlation functions, Eq. (2.2), we obtain

((u(x) = u(0))?) ~ |x|™. (2.77)

Nevertheless, if we focus on the quantity
((O5u;(x) = 0,1;(0))% ) ~ [x|™ 72, (2.78)

we can see that in-plane orientational order is still preserved [25| provided 7, < 2.
According to Eq. (2.72), n, < 2 also implies that 7, > 0, and therefore provided n;, > 0
both in-plane and out-of-plane orientational orders are preserved.

Now that we have discussed the basics of physics of classical free crystalline mem-
branes, we are in a position to discuss the quantum problem.

2.3 QUANTUM THEORY OF FREE CRYSTALLINE MEMBRANES

In order to access the possible importance of quantum effects in the properties of

a crystalline membrane we estimate its Debye temperature. Due to the fact that a

crystalline membrane has three acoustic phonons, we can also estimate three Debye

temperatures by

hwe,qp
kg

with {( = F,L,T indicating, respectively, the flexural, in-plane longitudinal and in-
plane transverse phonon mode with dispersion relations given by Eqs. (2.32), (2.33)
and (2.34); and qp = /47 /Acen being the Debye momentum of the 2D crystal, with
Acep its unit cell area. For graphene we have Ace = \/gag; /2, with ag = 2.46A its lattice

Tp, = (2.79)

constant, giving us qp =~ 1.587". We therefore estimate the Debye temperatures for
graphene as Tp 1, ~ 2500 K, Tp 7 ~ 1700 K and Tp r ~ 880 K. This simple estimation
indicates that, at least for graphene, quantum effects should play an important role for
all the acoustic modes even at room temperature.

In order to take quantum effects into account, and since we will be interested mostly
in equilibrium quantities, we proceed to quantize the classical theory defined by the
classical Hamiltonian Eq. (2.37) using the Matsubara imaginary time path integral
formalism (see Ref. [55] for a good introduction on the formalism). The partition
function of the quantum crystalline membrane is expressed as

Z:/Dmmk4mw, (2.80)
where Sg [u, h| is the Euclidean action of the membrane, which is obtained by adding

a imaginary time kinetic energy term to the classical Hamiltonian, Eq. (2.16), being
given by

SMmm:;Aah/fmkamQH@mﬂ

I 2 2712 ijkl
+ 2/0 ClT/d X [Iﬁ (6 h) + ¢ 'yijfykl} . (2.81)
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As before in the classical case, 7;; is the relevant strain tensor given by Eq. (2.17).

The displacement fields are now a function of both the spacial coordinate, x, and
the imaginary time, 0 < 7 < : u = u(r,x) and h = h(7r,x). The first line in
Eq. (2.81) is the imaginary time kinetic energy term which takes into account quantum
fluctuations. By neglecting this term the classical partition function, Eq. (2.40), is
recovered. Expectation values of variables are computed as

[ Du,h]..eSeluhl

() = J D [u,h] e—Selwh] -

(2.82)

Just like for the classical Hamiltonian, we can split the Euclidean action into quadratic,

cubic and quartic parts as
Splu,h] = 8§ [u] + S [h] + S5, [w,h] + S, [h], (2.83)

where the quadratic part of the action is given by

529) [u] = / dT/dQ 2 4 Mg 8kul} (2.84)

_ 2/0 dT/d% M@hﬂm(@%ﬂ, (2.85)

and the cubic and quartic interaction terms are given by

B .

St =5 [ ar [ dxe Mo @uho). (2:86)
B .

Sihalt) = g [ dr [ e @inon) @unan). (2587)

Writing the displacement fields in terms of Fourier components
h(r,x) = hge “nT el X, (2.88)
r 72

— _—iqnT iQ-X
u(T, x) 7\/5714 zq: uge e'T* (2.89)

where we have written q = (i¢p,q), with g, = 27n /S bosonic Matsubara frequencies
defined such that O(r 4+ ) = O(7) for O a bosonic operator. In terms of Fourier
components, and for an isotropic crystalline membrane, the quadratic action becomes

S(O) Zh [ p(ign)? + & |a/*| h_g. (2.90)

s [u Zu~ =0 (@) + A+ ) b5 lal” + pagigs | ol g (291)

The interaction terms of the action can be written as

Sg)int [u h FZUZ Uklp] q p)k QIhq phfqv (2.92)
4 ’L
a,9’,p

We are now in a position to study the anharmonic theory for crystalline membranes
taking into account quantum mechanical effects.
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2.3.1  Anharmonic effects: perturbative calculation

The Matsubara Green’s functions for the in-plane and flexural phonons are defined as

Dpg = —(hgh_g), (2.94)
D = —(uhel o). (2.95)

Ignoring interaction terms, the bare Green’s function can be read from the quadratic
action, Egs. (2.90) and (2.91), giving us

Dpg = — ; (2.96)
4 p(ign)” — pw
1
DY e = — . (2.97)
/ e | p (an)Z o pw%/T’q

Just like in the classical case, ij@d is decomposed into longitudinal and transverse
components and the bare dispersion relations are given by Egs. (2.32)-(2.34). The
corresponding retarded Green’s functions are obtained via analytic continuation ig, —
w+1i0", where 0% is an infinitesimal, positive constant (see Appendix (A.2)), giving us

1
pw? — pw%q + isgn(w)0t’
1
Do = : 2.99
L/T, q(w) pw? — pw%/Tq + isgn(w)0+ (2.99)

Did(w) (2.98)

The classical correlation functions (2.26) and (2.27) are obtained as the high tempera-~
ture limit of

(ha(T)h—q(0))y = ZDFq T,

ign
(uy(ryul q(0)>0 = Z D0 e, (2.100)
iqn

for 7 = 0. In the limit 7' — oo, only the ¢, = 0 term contributes to the sum over
Matsubara frequencies and we recover Egs. (2.26) and (2.29).

Now we wish to study the effect of the interaction terms Egs. (2.86) and (2.87). In
the interacting theory, the Matsubara Green’s functions, Eqs (2.94) and (2.95), obey
the Dyson equations

Drg = Dpg+DpgSraDra. (2.101)
iJ 0 0,ik <kl
D:;,]u,f; = Duljjq + ‘Duzj, qzuu,unJu qQ’ (2102)

where Yrg and E Fgq are respectively, the self-energies of the flexural and in-plane
phonon modes. Due to the fact that the interaction terms of the Euclidean action,
Eqs. (2.86) and (2.87), have the same structure as their classical counterparts, Eqgs. (2.38)
and (2.39), the perturbative evaluation of the self-energies in the quantum case has the
same diagrammatic structure as in the classical theory, with interactions still being
represented diagrammatically as in Fig. 2.1. It is our aim to evaluate the phonon
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self-energies in the long wavelength, low energy limit in order to study the possible
reconstruction of the phonons dispersion relation, which is given by

0 q = wiq+ReXlq(wea)/p (2.103)

where qu(w) is the retarded self-energy, which can be obtained from the Matsubara
self-energy, X¢ g = X¢ q(ign) by the analytic continuation ig, — w + i0T.
2.3.1.1  Flexural phonon self-energy

In order to study the correction to the flexural phonon Green’s function, it is useful to
first integrate out the in-plane phonons. The advantage of the path integral formalism
is that the calculation follows the exact same steps as in the classical case. After
integrating out the in-plane modes, the quantum partition function becomes

Z = Zup / D[h]e=Se.enll], (2.104)

where Zy o is the partition function for the non-interacting in-plane modes and Seg [h]
is the effective Euclidean action, which is given by

Speelh] = Sy [h] + Syl [h], (2.105)

where S](;Lﬂ [h] describes the effective interaction for the flexural phonons, which in
terms of Fourier components is given by

4 1 ij
Sf(s,lff [h] = 854 > RIM(q+p); 4 (¢ — ), Gharph-aha—ph—q (2.106)
PO

with ngl the effective interaction for the flexural phonons

ikl .. Ry 171
Rg = kal — VI <u’i/j/,[3uk/l/,*ﬁ>0 Ck ! kl. (2107)
Just as in the classical case the first term of Eq. (2.107) is due to the local direct interac-
tion, Eq. (2.93), while the second term is an in-plane phonon mediated interaction. For
the same reasons as in the classical case, for processes where the exchanged momentum
and Matsubara frequency are zero, p = 0, the direct quartic interaction is cancelled by

the interaction mediated by the in-plane phonons, RY klﬁ = 0, and therefore we have

explicitly excluded these processes from Eq. (2.106). Therefore, the effective interac-
tion in the quantum case as the same formal structure as the one in the classical case,
Eq. (2.46), with the only difference that now the average (), represents a quantum
thermodynamic average. However, while in the classical case the contraction of the
effective interaction tensor with the momenta of the flexural phonons gave origin to a
very simple result, Eq. (2.55), the situation will now be more complex. First we no-
tice that the effective interaction tensor ngl has the same symmetries as the stiffness
tensor, (2.10), namely

ikl oklij _ ojikl
RIM = RET = RIM. (2.108)

For an isotropic membrane a forth order tensor that is a function of the wavevector p
can be expressed in terms of the longitudinal and transverse projectors, ng and P}Jp.
In a space of arbitrary dimensionality there are 5 independent components for such a
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tensor with the symmetry Eq. (2.108) that can be expressed just in terms of szp and

Pjijp. The five possible combinations of the projection tensors are

PLpPLp:
Pr o PLp:
P}]pr%fp T Pg,pPTJ;{Cp’
sz,'ppﬁlp + Pii“J,'pPI]ilP’

Phorly + Py Py - Pl
In terms of these projectors we can write for p # 0

L 2.0 & il ik il
—{wigpun,—p)y = 5 IPI" DLp (Pi,pPi,p + PP, i,p)

1 . ” b
+5 IpI* Df; (Pi’pr%p + Pg,pp%{p) : (2.109)
such that
_ s’ <ui/j/,ﬁuk'l/,—p>0 KUK
2 2.2 L plL
= )‘2 |p| D%,f)Pz%'ﬂ,pPlzlj,p + ()‘ + 2“) ‘p| D%,fypij,ppkhp

AN+ 2p) |p)? DY 5 (PhoPihp+ (i <> kl))

+ 12 P DYy (P pPhip + (i 3 5) + (k< ) + (ik <> jl)) . (2.110)

We also notice that the stiffness tensor can be written in terms of szp and P}jp as
I = PPy 11 (PPl + 1)
+ (A +2u) P PE 4+ A (P;{ppffp +(ij k:l))
+ o (P%’prifp F (i )+ (ko 1) + (ik & jl)) . (2.111)

We now notice that in 2D we can introduce a basis {e”’p, eJ_’p}, with e , = p/ |p| and
€] p = e; X €| p, such that the projection operators can be written as

i i
PL,p = €||7pe||7p7 (2112)
P%J’p = ei’peip. (2.113)

With fc'his, it is easy to see that in 2D P%]pr%fp + Pﬁ p P%f“p = QP%{ pP:,’ffp‘.' Therefore, in
2D ngl only has four independent components. We can thus write ngl in terms of
the {er,eJ_’p} basis as

igkl _ >l L1 i § kI Wi s 3 k1
Ry" =Rp €1 p€l p€lpflp + Ry .p€),pCllpClp

LLII (i kol >
5 (Lol pelipelp + (i 6 1)

1L i j . . . .
+ Rf)H H (eL»Peﬁ,peiPeﬁvp + (Z « ]) T (k « l) + (Zk <_> ]l)) ' (2.114)

+R
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Summing up the two contributions to the effective interaction, Egs. (2.110) and (2.111),

the different components of R” kL are given by
RELL = ) (1 +Alp|? D%g,) +ou, (2.115)
RUN = (3 + 21 (1 + (O +20) [pP? Dg,ﬁ> , (2.116)
Ry = A (14 (A + 20) [ D5 ) (2.117)
Ré\uu — L (1 +ulpl? Dg’f)) , (2.118)

Using Eq. (2.97) the components of ngl are given by

A2

Ryt =Yop+ ——DY 5 2.119

P 2t X2 (2.119)

RO = (X +2p) DY 5, (2.120)

Rg“'” = \DY (2.121)

R = pDh 5, (2.122)

where we have introduced
. 2
DYy =—-" (ipn) . (2.123)

p (ipn)2 - PW;L/T

As we have said previously, the classical theory is recovered if we neglect the imaginary
time kinetic energy term in the Euclidean action Eq. (2.81). Doing this amounts to
neglecting all the terms involving in-plane phonons Matsubara frequencies, that is
setting ip, = 0. In this situation all of the components of the effective interaction are
zero but for RI%LLL, which for ip,, = 0 is reduced to Yop and we recover the classical
effective interaction Eq. (2.55). Therefore, it is convenient to distinguish between the
frequency independent classical interaction,

Ry =Yap, (2.124)
and the frequency dependent, which are zero for ip, = 0, quantum interactions,
R = MDY, 5. (2.125)
We have introduced the index M, which runs over {LLLL, I L LHl”}, defined
A2
ottt = , (2.126)
A+2u

il = X 4+ 2p, (2.127)
oI =) (2.128)
Ol L, (2.129)

and denote DY, 5 = DY for M =LLLL I AL and B9, = DY for M =L,

To lowest order in the effective interaction, the self-energy of the flexural phonon is
represented diagrammatically by Fig. 2.2(a) an is explicitly given by

0 1 ijkl
Eﬁv}l = —m Z Rff (¢ +p); 45 (q+ D)y QID%,F:ﬁf)

ZRP Ya.p Fq+p7 (2.130)
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where we have introduced the geometrical factors

111l

gzt = |af*sin g, p, (2.131)
! = al® cos? g p (|a] cos b p + [p])° (2.132)
gap = 2]al*sin® fgp cos g p (| cos eq,p +1p)), (2.133)
gap | = laf*sin® 0 p (2 |af cos bqp + [p]) (2.134)

where 0qp is the angle formed between the wavevectors p and q. We analyse the
contributions due to the classical and quantum interactions separately. For the classical
interaction we obtain

0),cl
skt = —YQDBA Zg““D%mf,. (2.135)

Z(O)’Cl is thus frequency independent. The sum over Matsubara frequencies is performed

using standard contour integration techniques. Writing DY Fg= D%q(iqn) we obtain

,cl dz
EE?,L *Y2DA Z gLLLL j[ %b(z)D%,qup(Z)
_ L1111 0,R
— Yap g T [ oDl o). (2.136)

where b(v) = (% — 1)71 is the Bose-Einstein distribution function and D%ﬁ(u) is the
retarded Green’s function. From Eq. (2.98), we have that ImD%’];”(V) is given by

1
ImD%ﬁ(y) = —;ﬂ'sgn(y)é (V2 - w%”q) . (2.137)

Using the d-function to perform the integration over frequency, the self-energy becomes

coth (fwrq+p/2)
2pWF,q+p

a,p (2.138)

In the high temperature limit, 7" — oo, we approximate coth (fwr q+p/2) ~ 2kpT/WF q+p
and thus obtain

_ d’p sin*@ 3YopksT
Jim =0 —Yop lal* [ e = e (2.139)

Vrla+plt 167k

recovering the classical result Eq. (2.58) as expected. In the low temperature limit,
T — 0, we have that coth (fwrq+p/2) ~ 1 and, for small momenta q, Eq. (2.138)
becomes

d? 6
lim S0 = Vap |q’ / p2 uE
-0 2PWE q+p

~ Yap 2\//ﬁ167r lql*1 (| ‘> (2.140)

where we have restored & and A is a high momentum cut-off, which we identify as the
Debye momentum, A = ¢gp. Notice that differently from the high temperature case, in
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the zero temperature limit Zg)zid x \q|4 with logarithmic accuracy and, therefore, the

classical interaction does not lead to a reconstruction of the flexural phonon dispersion
relation.

Now let us focus on the quantum contributions to the self-energy. These can be
written as

0),qt 0)M,qt
Sipdt =3 mipatat (2.141)
M
with each component E%])QM’qt being given by
(0)M,qt /. cM M 0 . 0 . .
EF7q ’ (an) = _57 Z gq7pDM,p(me)DF7q+p (ZQn + me) . (2142)

Pm,q

Performing the sum over Matsubara frequencies we obtain

E(O)M’qt( = _qupf 27rz (2) D p(2) D (i + 2)
qup / b()ImDyy, (V) D g (i +v)
dl/ 0,R 0,R
qupP v)Dy; plitn —V)ImDpo ., (v), (2.143)

where P indicates Cauchy’s principal value. Using the d-functions in ImD%}IRp(u) and

ImDY; Faq +p (v) to perform the integration over real frequencies we obtain

e
SO (ig,) = CM / p2 gM KM (ign). (2.144)

where we have defined

KM (o) = 1 WFq+p (Wrq+p + WMp) — (iQn)2
q7p(zqn) 9 2 SN2
PwFatp  (Wrqtp +wWip)” — (iqn)
b(war,p) wfzva ((iqn)z T wfz\/Lp N wlz““,qup)

W . 2 . 2
PR ((ig0)? + iy — hqep) — 4(i0)7 W

2
+ b(wrq+p) ((zqn) B w%‘lﬂ’) B w%/fvp <(an) + qu+P>

5 (2.145)
WK . . 2
PR (0. =~y +obasp) —4li0) wha
The first line of the previous expression takes into account zero point quantum fluctua-
tions, while the last two lines are due to thermally activated phonons. We are interested
in the real part of the retarded self-energy, which is obtained by performing the analytic
continuation ig, — w + 40", such that

0)M,qt,R d*p
Resin M (w) = ¢Mp / (%)Qgg{p/cg{p(w), (2.146)
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and Ké{p(w) = Re/Céf[p(iqn — w +i07). In the high-temperature limit limit, we can
neglect zero point quantum fluctuations and approximate b(w) ~ kpT/w. Therefore,

we obtain

kT
lim Ké\{p(w) =BT

T—o0 - pw%qup
2( 2 2 2

X _ i arp o (2.147)

[W2 — (Wrg+p + Wrp) ] [WZ — (Wrqt+p — WM,p) }

In this form we can see explicitly that for w = 0 we have lim7_, Ké\{p(w) = 0 and the
quantum interactions do not give any contribution to the self-energy in the T" — oo
limit. Notice, however, that even if we take T" — oo but keep w # 0, we obtain a non
zero value of ReEé\ff At (w). The analysis of this situation is subtle. For small w and q,
limy_, o0 ICéf’p (w) displays poles when for |p| = qp, /7, with

A+2
o = :M, (2.148)

: (2.149)

W
qr = -
I

when wpp = wyp. For typical graphene values we have qr ~ 4247 and qr =~
2.81&_1, which are larger than the Debye momentum. Keeping w finite, Ké{p (w) changes
sign at this divergence which is split into two. Since the integration in Eq. (2.146) is

performed in the principal value sense the overall result is finite. For small momenta
we approximate wrq+p & Warp ™~ wy,p and therefore obtain

kpT w?
lim KM (w) >~ (2.150)
T—00 ’ PYE q+p W T Wirp
Notice that another possible divergence can occur when q = —p. In order to see if

this divergence is integrable or not we must also consider the effect of the geometrical
factors g(]fp. For the contributions with M =1++L and M =1Ll this divergence if
suppressed by the respective geometrical factor géf[p. The same does not happen for
the terms with M =l and A =L+l and the divergence of the integral at q = —p
makes the integral diverge logarithmically. However, this divergence is a pathology
of the first order perturbation theory that should disappear if a more complete self-
consistent calculation is performed. It can be checked that if for long wavelengths
the dispersion relation of flexural phonons is reconstructed as w%,q x |q|4_77h with
np, > 0, this divergence is regularized. Ignoring this issue, the integrals can be performed
approximately yielding

2
: OMat.R, v ~mkBT o f W w
Tlgrolo ReXjiy (w)~C - lq| (wM,q) log <WM7q> . (2.151)

Therefore, we conclude that in the limit T" — oo, in the low energy and long wavelength
limit, the contributions due to the quantum interactions will be much smaller than the
ones due to the classical interaction, Eq. (2.58), as expected. From this discussion, we
conclude that to lowest order in perturbation theory the dominant contribution to the
flexural phonon self-energy in the high temperature limit is given by (Eq. (2.139))

0),R 3YopkpT
Ra (@)~ = al’

i Y 2.152
Tgr;oRe Fa 167K ’ (2.152)
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We now turn our attention to the low temperature limit, 7" — 0. In this limit, we
approximate b(wyp) ~ 0 and b(wrq+p) = 0. Therefore, we obtain
. 1 w w +w —w?
=0 2pWFgtp  (Wrgp +Wip)” — w?

We are interested in results to lowest order in w and q. We obtain a finite contribution
even in the w = 0 case, on which we will focus. For w = 0 we obtain

1

S — (2.154)
WFrq+p T WM,p

1
lim KM (0) = =
Jim Kap(0) =3
Expanding the the integrand of Eq. (2.146) to lowest order in q and performing the

integration over p we obtain the contribution due to the quantum interactions in the
T — 0 limit

lim Rex(0)-4 b0 g) o D ¥ _3lal’ tog (14 (2.155)
T—0 F.q - 2\/p?)\+2/JJ 167 qrL 3 .
21)2 |al* . [ A
lim Rex(@Illat-R gy ho (A+2p)7|d” 5 (A | (2.156)
-0 a 2/pk K 4m \qr
4
: (O)LL]at,R h Ald| 2A A
lim ReX: = ~log 1+ — 2.1
Hm ReXpg (0) o 8t \ata e\ T )) (2.157)
. hopla? (A
lim ResOLILIatR gy o plal” g (A ) 158
Tho o Fa 0= r & (2.158)

where we have restored A, introduced the function
1
P(z) = 3% (x —2)+1log(1+x), (2.159)

and introduced once again A as a high momentum cut-off, the Debye momentum. While
the contributions due to the +11++ and L1l terms depend on momentum as \q\4, the
I and L4 terms have a |q|2 dependence and will therefore be dominant at long
wavelengths. Notice that besides high momentum logarithmic divergences, we have
also obtained power law divergences. By splitting the effective interaction RYM into
the contributions for the quartic on-site interaction and the in-plane phonon mediated
contribution and carefully analysing each contribution allows us to see that the main A2
divergence comes from the quartic local interaction while the A and log(A) divergences
come from the interaction between in-plane and out-of-plane modes. It can be checked
that, in the long wavelength limit, the result obtained for ReEg)q’R(ijq) is the same
as the result of Egs. (2.155)-(2.158). This tells us that, for physical excitations, the
frequency dependence of the self-energy can be neglected in the low temperature and
long wavelength limit. We can therefore write

2
jl&no ReXp o (w) =~ 3o A (qL@ (CIL + g1 ) (2.160)

To first order in perturbation theory, the dispersion relation, g, of the physical
excitations is given by pQQRq = r|q* + ReZq (Wrq)- Note that, for g — 0, Qrq ~ |q

instead of wpq ~ |q|2. Therefore, we have found that in the zero temperature limit
Q%q o |q*™™ with 7, = 2 in the perturbative calculation.
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Just as in the classical case, we can estimate, in both the high temperature and
low temperature limits, the momentum scale, k., below which anharmonic effects be-
come dominant, as determined by the Ginzburg criterion Zgg,kc (Wrk,) ~ K,kél. By
using Egs. (2.139) and (2.160), for the self-energy, respectively, in the high and low

temperature limits, we obtain

3kpTY:
ki ~ \/7167”@2 : (2.161)
h A ANTY?
T—0) e 4 A 4 o
FT=0) /87rp1/2/€1/2 {qus (qL> + i <QT>] . (2.162)

For typical graphene values we obtain k:((;THOO) ~ 0.17A7" at T = 300 K, and setting
A = gp, we obtain kgTﬁO) ~ 0.1A7" at T = 0. Tt is useful to write approximate
expressions for k. in the limit 7" — 0 when A/qp/;, > 1 and A/q7r/;, < 1. Expanding
the function @(z), we obtain the following approximate expressions:

( h A+ 3u> 1/2 A
kgTﬁ\O) ~ 16m,/pr 1/;; )
h 1/2

ey A2 A :

<247r\/p?> (qr +qr) <4qr/L

To determine the actual importance of the anharmonic effects in suspended crystalline

membranes, one has to compare the anharmonic scale k., with the minimum momentum

allowed by the finite size of the sample ~ L~! and with the momentum scale due to

residual strains ~ /(A + p) @/k, where @ is the strain [35], see Eq. (2.197) ahead. If
L=Y ~ /(A + p) u/k > k. then anharmonic effects will be strongly suppressed.

We can also estimate the quantum-to-classical crossover temperature, T, above

which the classical behaviour sets in by comparing the perturbative results for the

self-energy in the low and high temperature limits

A> ar/L;
(2.163)

. R ~ T1i R
jlgr;o ReXy (wrq) =~ %{n}o ReXq (wrq)- (2.164)

We obtain

N 2h K2 "
= 3kppl/2k1/2 Yy

@) e

a quantity that depends on the UV cutoff A. Notice that since in both the high and

low temperature limits the leading contribution to the self-energy goes like \q]z, this
(T—o0) with k(T—>0)
C C

*

is equivalent to comparing k . Expanding once again the function

&(x) we obtain

het2 (A +2p) (A +3p)

A%, A g,
T* ~ 3k2Bhp1/ 2 \ L_Lf Z(A + 1) ar/L 2,166
K 7! 3
A+2 A°, A .
kppl/2 du (N + p) (VA+2u+ ) A2, <dqr/L

For typical graphene values, setting A = ¢p, we obtain a value of T* ~ 70 — 90 K
(depending on the values we take for the elastic constants, which depend themselves
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Harmonic

T*
T

Figure 2.5: Diagram in (T, ¢) space representing the regions where anharmonic effects are weak
and where they dominate for a free quantum crystalline membrane. At high enough
momentum ¢, we are in the Harmonic region: anharmonic effects are weak and the
dispersion relation for the flexural phonon is given by Qpq o |q®. For small
momentum, anharmonic effects become dominant and we obtain Qg q o |q|27""/ 2,

At temperatures above T*, anharmonic effects are driven by thermal fluctuations,

and we are in the Classical Anharmonic regime. Bellow 7%, anharmonic effects are

driven by quantum fluctuations, and we are in the Quantum Anharmonic regime.

The dash-dotted red and the dashed blue lines are respectively given by Egs. (2.161)
and (2.162) , which split the harmonic and anharmonic regions in the high and
low temperature limits. Their intersection determines the quantum-to-classical
temperature T*.

on the temperature [80]). Below this temperature, the contribution to the self-energy
from the quantum interaction terms lell””” and Ré”J'” will become dominant. Fig. 2.5
shows the different regions in the (7, k) space where anharmonic and quantum effects

become dominant.

2.3.1.2 In-plane Green’s functions

To lowest order in perturbation theory, the cubic interaction term Eq. (2.92) gives
origin to the following self-energy for the in-plane phonons

5 (0)ij _ Mg X((io)klmnqscmnsj, (2.167)

uu,q r

where we have introduced the flexural phonon bubble tensor, X((io)ij kl, which is defined
as

O . _ ‘
Xq = = 8ﬁAzﬁ:[(p+q)ng+pz(p+q)J]><

 [(p+ @) o+ vk (0 + )] DppDisiqs (2.168)
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where we have symmetrized the tensor with respect to the first and last two indices,
since they are contracted with the stiffness tensor. With this definition, X(~ VKL |ag

the same symmetries as that of the stiffness tensor, Eq. (2.10). Just as for the effective
interaction for the flexural phonons, Eq. (2.114), we write the tensor X( VKL {0 the

terms of the {e||7q,ej_7q} basis as

(O)igkl _ i §  _k O i g ok

Xg =gl gl alla T Xg e, a|l,a€ll. o€l
OLLIl (i iy
X €1a®Lq¢llala + (i € D)

0)L]|L i j . . . .
+ I <eL,qeﬂ’quLqeﬁ7q + (i 5 §) + (k< 1) + (ik Jl)> . (2.169)

(0)igkl

The four independent components of Xg are explicitly given by

Xélo)iLLL 25A ZgJ_J_J_J_ ~D%7f)’ (2.170)

X((iO)H””H _ QBA ZQIIIIHII N O,fw (2.171)

X((io)LLHH — 45A Z LLHH 7p+qD%p, (2.172)

g = —S;A ] 9o D5 DY s (2.173)
p

with gf\)/{q given by Eqgs. (2.131)-(2.134). Using this decomposition and performing the
contractions of indices in Eq. (2.167) we conclude, as expected for an isotropic system,
that the self-energy for the in-plane phonons can be decomposed into a longitudinal
and a transverse component

(0 ? 0 3 0) )
Euu)é E(L,)QP] + 27 Py (2.174)
with
11
E(Lo,)q = A+ 2,u)2 ’q|2X|f|1”H” + A\ +2p) !q| X3 Il 4+ A2 !q|2 111l (2.175)
1)L
S = 4% ol g (2.176)

Performing the sum over Matsubara frequencies in Eq. (2.168) we obtain

0)M . d*p R .
A (zqn)cx/ ngfq /b )Im D%p(V)D%’p_i_q(zqnqu/)

2 1%
/(;ZWI))QQQ/[q d b( ) (an* )ImD%};-I—q (v). (2.177)

The proportionality factor is due to the extra factors of 1/2 and 1/4 that appear in
OLLI 51 g A ©OLIL
X and xg

q . Performing the integration over v, we obtain

1 d’p
LOM (0 o 2/ o )ngquq(zqn) (2.178)



2.3 QUANTUM THEORY OF FREE CRYSTALLINE MEMBRANES 35

where
) 1 WFp + WEp+
Foalitn) = 5 T
P*WEpWEp+q (ign)” — (Wrp + WEp+q)
. 2
b(wrp) ((i90)° + i~ whip 1)
2 . .
PEp ((ig.) — (wrp +wipra)’) ((ig2)” = Wrp — wrpia)®)
. 2 2 2
o (6972 ok

= — T e (2.179)
P WFp+q ((zqn) - (pr +oJF7p+q) ) ((an) - (OJF,p —WF,p+q) )

As previously, we focus on the real part of the retarded self-energy, which is obtained
by performing the analytic continuation iq, — w + i0". The retarded flexural phonon
bubble is given by

d’p
ReX(O)MR P/ 291]:)\/[(:1 pq( ) (2180)

We will focus on the low temperature limit, T — 0, in which case Fp q(w) reduces to

lim Fpq(w) = =— ! Wrp ¥ @Fpta (2.181)
T—0 2p*WFpWFp+q w? — (WEp + WFp+q)
If we furthermore focus on the w = 0, q = 0 limit, we have
Fool0) = g (2.182)
P WEp

Since for large values of p we have that gé‘,/’[q x |p|4, we conclude that Eq. 2.180
diverges logarithmically both for large and small momenta. Inclusion of a finite w or
q effectively cuts off the integration for small values. With these considerations, we

estimate X(O)MR(w) as
. (0)M,R h A?
lim Rexq (W) ~ ———7 log (2.183)
T—0 2,01/253/2 max < /H/p“)7 ‘q’2>

Therefore, we will just have a weak logarithmic correction to the correlation function
of the in-plane modes. Notice that the minus sign in Eqs. (2.183) leads to a reduction
of the in-plane elastic constants. To first order in perturbation theory, the in-plane
mode dispersion relations would be modified to Q%/qu = w%/T’q +X1/7q (WL/T,q) /p-
Taking the limit q — 0, we would obtain a negative dispersion relation, indicating that
the theory is unstable. We attribute this, not to a physical instability of the membrane,
but to a breakdown of the perturbation theory, showing that one should go beyond the
first order.

2.3.2  Anharmonic effects: self-consistent Born approzimation

The next step to go beyond first order perturbation theory for T — 0, is to perform
a SCBA calculation in the spirit of what was done by Nelson and Peliti in Ref. [23].
First, as we have seen in Section 2.3.1.2, in first order perturbation theory, the in-plane
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mode propagator has only logarithmic corrections due to anharmonic effects. This is
a much weaker effect than for the out-of-plane phonons and therefore we will ignore it.
Next, according to Eq. (2.160) we also neglect the frequency dependence of the flexural
phonon self-energy and write the full out-of-plane correlation function as

Dyt = p(ign)? — pwig — Kag" [al™™ (2.184)

where we have neglected the frequency dependent of the self-energy on the Matsub-
ara frequency and have further made the ansatz EE—%BA ~ Kq)" |q|4777h, with 7, an
anomalous exponent and gy a momentum scale both of which are to be determined in
a self-consistent way. Therefore, the self-energy in the SCBA is written as

M
SSCPA _ Z Ry g4
10 (ipm)® = pt gy — Fag" la+ |

— (2.185)

Performing the sum over Matsubara frequencies, making the analytic continuation to
real frequencies we obtain in the 7" — 0 limit, using Egs. (2.146) and (2.154),

. d? p Yop sin? 6
%;rrb Reﬁ%?qBA = laf* / o == s
2P\/WFq+p+"<qu la+p" " /p
1 d? x
+ = Z C’MP/ p2 Jap . (2.186)
2 ; (2m)" /2 + kg |q + ’4*77;1/ +
F,q+p Q() q |3 P WM. p

It is easy to see that in the q — 0, the leading contribution to the self-energy comes
from the terms involving RUHHH and RJSHJ‘” just as in the perturbative calculation. This

is due to the fact that the geometrical factors g and gi Ill,l” behave as ~ ]q|2 for

q — 0, while géﬁLL behaves as ~ ]q| and gqp as ~ |q\3. In the g — 0 limit, we
can thus focus only on the Il and LI contributions, which give origin to a energy
that still behaves as limg_, ReE%?qBA(w) « |q|?. Therefore, in the SCBA calculation
we still obtain a value of n, = 2, in agreement with first order perturbation theory.
This is an important result which justifies the use of first order perturbation theory.
This in in contrast with the classical regime, where the perturbative 7, = 2 exponent is
changed to 1, = 1 obtain within the SCBA [23|. The present result of 7, = 2 indicates
that quantum anharmonic effects act as an effective positive external strain, which
contributes to the stabilization of the 2D phase of the membrane.

Using the value of 1, = 2 and focusing in the q — 0 limit, the momentum scale g
is determined by

s (A+2p)h

qdo = /
87TP1/ 2632 \/pt +q0p +qrp

+ 1/2 3/2/
8mpi/ek Vol +qu +arp

Notice that the integral over p is convergent in the p — 0 limit and the denominator
in the integrand of Eq. (2.187) is dominated by the terms g, /rp for small go. On the
other hand, for large values of p, the term p? dominates. Therefore, the integral will
only be weakly dependent on the term q§p2, and we anticipate that the solution for qg

(2.187)
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will be very well approximated by setting go = 0 in the RHS of Eq. (2.187). Performing
the integral over momentum we obtain

h A q A qo

2 4 4

— Fl=, + AR , , 2.188
@ 8mpl/2k1/2 {QL <qL QL> o (QT qr ( :

where we have defined the function

F(z,y) = %55 (\/m* 2) + % (2- y2) sinh™! <z)
-1 T 1 T
+ Mtanh (1_y2> - Mtanh (\/(1 —y?) (22 + y2)> .
(2.189)

The function F'(z,y) reduces to &(z), Eq. (2.159), in the limit of y — 0. Solving the self-
consistent Eq. (2.188) numerically for gy we obtain a value that, for typical graphene
parameters, is nearly unchanged with respect to the perturbative result k. ~ 0.1 Afl,
Eq. (2.162). The relative difference between the perturbative result for k. and self-
consistent value for qq is of the order of 1074,

2.4 THERMODYNAMIC PROPERTIES OF FREE CRYSTALLINE MEMBRANES

In the previous section, we have studied the effect of anharmonicities in the phonon
dispersion relation of free crystalline membranes, in the low temperature limit. These
anharmonic effects will also manifest themselves in the low temperature behaviour of
several thermodynamic properties, which probe the low-energy elementary excitations
of the system. In the following, we will focus on the study of the areal thermal expansion
and of the specific heat of a crystalline membrane.

2.4.1 Thermal expansion

The areal thermal expansion coefficient is defined as

1 0AA

aA

where AA is the change in the area of the membrane (to be understood as the area of
the membrane projected onto the reference = — y plane), A is the reference area of the
undistorted membrane, and the index P indicates that the process occurs at constant
pressure or in this case at constant stress. The thermal expansion is an intrinsically
anharmonic effect and a purely harmonic crystal does not expand or contract under a
change of temperature.

The most common approach to compute the thermal expansion coefficient is the
quasi-harmonic approximation (QHA) [95]. The QHA is a minimal extension of the
harmonic theory, which treats the phonons at an harmonic level, but assumes that the
phonon frequencies have a dependence on the overall expansion of the crystal lattice.
The Helmholtz free energy density for a harmonic crystal is given by

F(AA,T) = Eg(AA) + kBTT Zn:log {2 sinh (gzg)} : (2.191)
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where w,, are phonon frequencies, which in the quasi-harmonic approximation are as-
sumed to depend in the change of area, AA, and F(AA) is the zero temperature elastic
energy density due to the expansion, which for a 2D isotropic material is given by

2
Fo(AA) = %B <Aj> , (2.192)

where B = X\ 4 p is the bulk modulus. Using the triple product rule the thermal
expansion can be written as
oP
1y 1 &F
P - )
A 5% }T BOTOA

ap = (2.193)

with the 2D bulk modulus written as B = —A (0P/0A)|; and F the Helmholtz free
energy . Using this previous result and assuming that in Eq. (2.191) the term Ey(AA)
does not depend on temperature we obtain the QHA result for thermal expansion

k < hw )2 o
QHA B n n
a; == , (2.194)
BAL\ksT ) gsinn? ()
where we have restored A and 48
Wn,
= —— 2.195
Y o oA ( )

is the Griineisen coefficient of mode n, which describes the change of frequency with
the expansion.

We will now see how the quasi-harmonic approximation breaks down for a crystalline
membrane. It is possible to compute the Griineisen coefficient for the flexural mode
from Eq. (2.81). In order to do this we notice that a homogeneous, isotropic expansion
can be modelled by the replacement d;u; — 4d;;/2 + Oju;, where 4 = AA/A is the
relative change of area. Under this transformation the cubic interaction term, Eq. (2.86),
generates a new quadratic coupling to the flexural phonon [96]

O _ 1 [° 2 2
58 1) = 2/ dT/d X A+ 1) @ (9h)? (2.196)
0
which modifies the bare dispersion relation of the flexural phonons to
_ K A+ p)u
g () = \/ gt 4 G g (2.197)

where A+ p is the bulk modulus of the membrane. From this expression, the Griineisen
coefficient is found to be negative and is given by
1 Ow Fq (’I_L)
fyF7q = T T a-
WFrq ou

1A +w)
2 k|q?

(2.198)

Using Eqs. (2.194) and (2.198), we obtain the QHA result for the thermal expansion of
a crystalline membrane

oA _ I /A d’q af?
AT TRk T? )y, (o) sl (k) (2T))’

(2.199)

min
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where we have introduce a low, gmin ~ 27/L, and a large, A ~ 27 /a, momentum cut-off,
where L is the linear size of the membrane. Notice that the previous result predicts
a negative thermal expansion, or thermal contraction, for the crystalline membrane.
This is the so called membrane effect |29]. Using the bare dispersion relation for the
flexural phonon wgq o |q|2, it is easy to see that the previous integral is divergent for
Gmin — 0. The integration in Eq. (2.199) can be performed analytically for A — oo

yielding
Qua kB kpTp'/?
4 (fml/? — | (2.200)

where we have introduced the function

710 = oo (1) o (26 (1)) o

Now we notice that in the QHA the zero temperature, thermodynamic limit is not well
defined, since the order of the limits " — 0 and L — oo does not commute. As a matter
of fact for t > 1 (taking L — oo first) we have Z(t) ~ 1 4 log(¢), which leads to ay =
—oo for any finite temperature and the QHA predicts that an infinite flat membrane
is unstable. In the opposite ¢ < 1 limit (taking T — 0 first) we obtain Z(t) ~ e~/ /¢
and therefore for any finite size membrane, the thermal expansion coefficient vanishes
as T' = 0 is approached, in accordance with the third law of thermodynamics. We
will now see that taking anharmonic effects into account beyond the QHA will lead
to a vanishing thermal expansion in the zero temperature limit, even for an infinite
membrane. The simplest approach is to notice that the bare, harmonic dispersion
relation wrq = v/k/p|a? is only valid, at high temperatures, for |q| > k. with k.
given by Eq. (2.161). Therefore, the integration in Eq. (2.199) should not be cut-off
at small momenta by 27/L but by k. [96]. Therefore, the high temperature thermal
expansion of a membrane becomes finite and is given by

1 3/2,1/2 1 3/2 ,1/2
aA:—kBI< O™ "p ):—kB log< o "p 7 (2.202)

8Tk 3hY2D 8Tk 3h}/2D

which leads to a temperature independent value of ay ~ —10~° K~!. This indicates
that inclusion of anharmonic effects makes the thermal expansion finite, but the ob-
tained constant thermal expansion can not be extrapolated to the T' — 0 limit, where
the thermal expansion should vanish.

In order to study the thermal expansion in the low temperature limit and taking into
account anharmonic effects in a rigorous way, we first notice that according to general
elasticity theory the relative change of area is given by

A
In order to compute (9;u;) we add an external stress, o, to the Euclidean action,
Eq. (2.81), obtaining the stress dependent partition function

Z o] = / D [u, h] e~ Selwhl=Spul (2.204)

with S7, [u] the stress dependent part of the action

B
S%[u] = —0 / dr / d?x05u;. (2.205)
0
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With this, the relative change of area can be computed from the partition function as

(2.206)

Notice that o couples to the q = 0 component of 9;u;. Therefore, we can perform a
shift of O;u; in the functional path integral dju; — O;u; + Cij ilékla in order to cancel

the linear term in 0;u; included by S% [u]. By doing this the partition function becomes
V —1
A [0‘] Ciiji© /D _SE [u,h]-SF [h} (2_207)

where we have generated an additional term for the action involving the out-of-plane
displacement S% [h], which is given by

B
- ég/ dT/dQXGZ-haih. (2.208)
0

Therefore, the thermal expansion can be expressed as

10

~5 o7 (Oihdih) . (2.209)

ap =
This is an exact result for the theory defined by the action Eq. (2.81). The previous
expression also provides a very interesting geometrical interpretation for the negative
thermal expansion of a crystalline membrane, as it expresses the thermal expansion as
a normal normal correlation function: (9;hd;h) =~ (én - on). Furthermore, Eq. (2.209)
shows that the crystalline membrane theory defined by Eq. (2.81) always has a negative
thermal expansion. Of course that at high enough temperature cubic and quartic anhar-
monic effects involving the in-plane displacements, that are not captured by Eq. (2.81),
will also become relevant and will compete with the negative contribution due to the
flexural phonons, Eq. (2.209) [80]. The membrane thermal expansion can be expressed
in terms of the flexural phonon Green’s function as

4= 28T BA Z laf* D

_ %a% (/ (;ij:;?/d:b( )yq|21mpl{iiq(w)>. (2.210)

where in the last line we performed the sum over Matsubara frequencies. Notice that
the expression for the thermal expansion in terms of the retarded Green’s function
can be directly obtained from Eq. (2.209) by using the fluctuation-dissipation theorem
(see Appendix C). Taking into account the results from Section 2.3.1, we neglect the
frequency dependence of the flexural phonon self-energy, and write the full flexural
phonon retarded Green’s function as

DE (W) = (pw? — pQ% g + isgn(w)i0™) (2.211)
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where Qpq = \/</€|q]4 + kg |q|4—nh) /p is the dispersion relation of the flexural

phonon taking into account anharmonic effects. The thermal expansion is thus given
by

kg [ d*a I’k|qf? 1 ( 810gQF7q>
g = ——

26 (2m)" p (ko T)” 4sinn? (G250 ) dlog T

kg [ d’q  hklq oty ((192ra ) 01ogQrg
2K (27T)2 2kpT pQpq 2kgT ) OlogT '’

(2.212)

where we have allowed for {1rq to be temperature dependent. If one ignores this
temperature dependence and replaces {2r 4 by the bare dispersion relation, wrq, we
recover the QHA result from Eq. (2.199). We now focus on the low temperature limit,
which will be dominated by quantum fluctuations and long wavelength phonons and
therefore we approximate Qpq ~ \/rq)"/ p|q\2_"h/ 2. Furthermore, for T < T* the
flexural phonon self-energy saturates to a constant and therefore we also ignore the
temperature dependence of {pq. Contrary to the divergent result obtained in the
QHA, the integral in Eq. (2.212) is now finite for small momenta for any n, > 0 (it is
also finite for large momenta) and a straightforward calculation gives us

210, /(4—np)
kp 2,01/2kBT .
A= _271' (4 — 77h) K ( hH1/2q8 Inha r<T (2.213)
with I, the function defined by
o0 p(4+n)/(4—nn)
Ty = /0 di— 5 — (2.214)

For the low temperature result, obtained both in perturbation theory and with the
SCBA, of ny, = 2 we obtain I, = 3¢(3)/2 and a temperature dependence of the thermal
expansion of ay o< —T2. Most importantly, this result correctly predicts a vanishing
thermal expansion coefficient for 7' — 0, satisfying the third law of thermodynamics
even in the limit of an infinite membrane, L — oc.

For low temperature compared with the Debye temperature, but higher than the
quantum-to-classical temperature 7%, T* < T' < Tp r, classical anharmonic effects
start dominating the physics and we can no longer neglect the temperature dependence
of Qpq which is encoded in the momentum scale go = ¢o(7"). Doing the same long
wavelength approximations and cutting off the integral at |q| < ¢o(T") for the terms
proportional to 0log Qp q/0log T in Eq. (2.212) (since above go(7") anharmonic effects
are weak and therefore the temperature dependence of Qp q ~ wr q is weak), we obtain

2 4—
o . 912 T M/ (4=nn) )
A7 o (=) k \ Re12E2(T)

- [ he'2@(T) - [ hE'2@(T)
T 0 0
X [Inh — T <I77h (pl/?kBT + I kT

where we introduced

TP < T < Tp,F, (2.215)

- Yy p(dtmn)/(4=mn)
I, (y) = /O dr— 5 (2.216)

- y
Jnh(y)—/ dzaz®m/ A=) coth g, (2.217)
0
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and defined the exponent 77,7; = 0logQpq/0logT. Using the classical result from
Eq. (2.65), qo(T) oc T2, we have that Qpg x Tm/% and therefore ng = ny /4. The fact
that go(T') o< T/? also implies that the thermal expansion for T* < T < T D,F becomes
temperature independent. As such for graphene we obtain that for 7% < T' < Tp
the thermal expansion is of the order of

oy~ B (2.218)
K

confirming the result from Eq. (2.202).

2.4.2  Specific heat

The specific heat at constant pressure/stress is defined as the change of enthalpy with

temperature
_oH

%= 51,

where for a crystal the enthalpy per unit area is given by

(2.219)

H=U = (uij) 0ij,

with o;; the externally applied stress, (u;;) the in-plane linear strain tensor and U is the
total energy of the system per unit area. Since we are working at zero external stress,
the enthalpy coincides with the total internal energy. We prove in Appendix D that
the total energy of an interacting system with cubic and quartic interaction, such as
the one defined by Eq. (2.81), can be expressed in terms of two-point Green’s functions,
using a modified Migdal-Galitskii—Koltun energy sum rule [97, 98]. The total energy
of the membrane per unit area can be written as

U =yl 4 g 4 @) (2.220)

where U(©") involves the ezact flexural phonon Green’s function and UX/T) involves the
exact in-plane Green’s function for the longitudinal/transverse phonon. The different
contributions are given by

11 .
e = 1552 (30ta) + rlal') Drg, (2.221)
1 .
a

Although anharmonic effects couple in-plane and out-of-plane phonons, we can still
interpret the contribution U©") as being mostly due to the flexural phonon and the
the contributions UZ/T) as being mostly due to the in-plane longitudinal /transverse
phonon modes.

Just as for the thermal expansion, we ignore the frequency dependence of the phonon
self-energies and therefore obtain

ho[ dq W wh
lout) — 2 / th ( ’q) 30pg + —2 |, 2.223
8.J (2m)” O\ 2kpT P Qg ( )
ho[ d? g
(/) _ I a g h( —&/Ta 2.224
U 5 / (2n)? L/T,q Ot sl ) (2.224)
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The specific heat can therefore be written as

¢p = o) 4 oF) 4 oD (2.225)
(out)

o) — 3U8 - (2.226)
(L/T)

/D) = WaT’ (2.227)

with

clout) — kB/ d’q (Mg 23+ (WF7q/QF,q)2 1— %
P 4 ) (2m)? \2kpT sinh? (fmp,q) dlog T

2kpT

kp [ d?q hQpq hQrq wrq \*| 8log Qrq
o 2~ coth ’ 3— ’ : 2.228
4 ) (@n22ksT O\ 2kpT Org) | O10gr @ 2P
and
2
LT = ki / “a <hQL/T’q) L < _ Olog QL/T,q>
i (2m)? \ 2kpT sinh? <hf22]f;?q) OlogT

d*q hQy hQp g\ Olog Q7
k 9 coth A 4 (2.229
" B/ (2m)? 2kpT «© <2kBT OlogT ( )

We now focus on the low temperature behaviour of the specific heat. Just as for the
thermal expansion, the low temperature properties will be dominated by long wave-
length phonons such that we can approximate Qpq ~ \/kgl"/p ]q|2777h/2. If we are
in the low temperature quantum regime T' < T™, we also neglect the temperature
dependence of {)r 4 and obtain the contribution to the specific heat

4/(4—np)
3 2012k 5T
(out) _ 0 p o2 2P _WBL L, . T<T* 2.230
Cp 87'[' Bq[)( h:‘il/gqg Nh < ) ( )
where
I Ood 2(8=mn)/(4=np) 0931
"h_/o i) (2.231)

For the obtained value of n, = 2 at T' — 0, we have Ly = 3((3)/2 and cg)m) oc T2. This

result is to be contrasted with the one obtained at the harmonic level, which would
predict cﬁ,om) o T, and is a consequence of the change of long wavelength dispersion
of flexural modes from o |q|* to o« |q|. Regarding the contribution mostly due to
in-plane modes, CI()L/ T), as discussed in Section 2.3.1.2, anharmonic effects only lead
to a logarithmic correction of the in-plane phonon Green’s function, which we will
neglect. Therefore, the contribution mostly due to the in-plane modes reduces to the

non-interacting one, which for T — 0 yields the expected T? dependence

, 2%kpT\ 2
(in) — f. B p P, 2.232
p B< 5 ) <)\+2M+M 2 ( )

Therefore, taking into account at the same time anharmonic and quantum effects, we
predict an intermediate behaviour T < T4 =) < T2 for the specific heat, which
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results from the non-linear coupling between in-plane and out-of-plane modes. For the
obtained value of 7, = 2 both cz(,om) and cz(,in) are proportional to T2. Notice, that the
harmonic theory calculated for graphene [99, 100], predicts ¢, o< T' up to temperatures
as high as 100 K which is about close to the value we found for T*. That is why we
believe that the linear T' dependence should not be observable in graphene for which

we predict instead a T2 dependence.

2.5 CONCLUSIONS

In this chapter, we have studied the properties of free crystalline membranes. In a
free membrane, the absence of an applied tension or of coupling to a substrate allows
for strong out-of-plane fluctuations, which naively make a flat phase of the membrane
impossible. These out-of-plane fluctuations are inevitably accompanied by in-plane
stretching of the membrane and this fact is at the origin of an anharmonic coupling
between out-of-plane and in-plane phonons. In the high temperature limit, classical
statistical mechanics predicts that these anharmonic affects lead to a strong correction
to the in-plane elastic constants and bending rigidity of the membrane, which become
scale dependent. Motived by the high Debye temperature of graphene (~ 1000 K), a
prototypical crystalline membrane, we studied the importance of these anharmonic ef-
fects in the low temperature, quantum regime. In particular, we focused on the effect of
anharmonicities in the dispersion relation of the flexural phonon and in low temperature
behaviour of the thermal expansion and specific heat of a crystalline membrane.

In order to describe quantum effects in a crystalline membrane, we quantized the thin
plate model of a crystalline membrane, which includes anharmonic coupling between in-
plane and out-of-plane phonons, employing a functional path integral approach. Using
the obtained model, we computed, to lowest order in perturbation theory and using
a self-consistent Born approximation (neglecting corrections to the in-plane phonons),
the correction to the dispersion relation of the flexural phonons. By keeping retardation
effects in the effective interaction between flexural modes, due to the exchange of in-
plane phonons, we have found out that the long wavelength dispersion relation for
flexural phonons is changed from the bare result wrq o |q|2 into Qpq o |q|2_”h/2,
having obtained 7, = 2 in the T" — 0 limit, both in the perturbative and in the self-
consistent calculation. This is to be contrasted with the classical result, where a lowest
order perturbation calculation leads to n, = 2, but a self-consistent Born approximation
changes this result to n, = 1. We also estimated the momentum scale, k., bellow which
anharmonic effects become dominant, having found for graphene k. ~ 0.1 A" in the
T — 0 limit, which is about 0.6 of the corresponding momentum scale estimated
within classical statistical mechanics at room temperature. We also estimated the
crossover temperature, T, bellow which quantum mechanical fluctuations dominate
the dispersion relation of the flexural phonon. For typical graphene parameters, this
crossover temperature is 7% ~ 70 — 90 K.

By using the calculated flexural phonon Green’s functions in the quantum anhar-
monic regime, we established the low temperature dependence of the thermal expan-
sion and of the specific heat. In the T" — 0 limit, we find a power-law behaviour for
both the (areal) thermal expansion coefficient a4 and the specific heat ¢,. We found
that for the thin plate model considered, thermal expansion is always negative and that
anharmonic effects render it finite in the thermodynamic limit, vanishing for 7" — 0 in
agreement with the third law of thermodynamics. The low temperature behaviour of
the thermal expansion is found to the aq oc —T2M/(4=) which for the obtained value
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of np, = 2, yields acy o< —T2. Notice, that this result is to be contrasted with the one
obtained within a quasi-harmonic approximation, which predicts an infinite thermal
expansion at any finite temperature in the thermodynamic limit. The low temperature
behaviour of the specific heat is also affected by the characteristic exponent 7y of the
elementary phonon excitations and we have obtained a specific heat due to the flexural
phonons behaving as c](jom) o T4 A=) For np = 2, we obtain c};om) o T2, while
the harmonic theory predicts cgmt) o T'. The contribution to the specific heat due to
in-plane phonons is found to not be significantly changed by anharmonic effects in the
T — 0 limit, retaining the behaviour of an) o T, predicted by the harmonic theory.

This work is a first step towards the full understanding of the physics of quantum
crystalline membranes, such as graphene. Many question remain unanswered. First,
since we focused our study on the T' — 0 limit, it is not clear how the transition occurs
between the low temperature quantum behaviour and the high temperature classical
one. In particular since we have obtain 7, = 2 for T"— 0 and studies based on clas-
sical statistical mechanics yield n, ~ 0.72 - 0.85, one expects that there will be an
intermediate region where 7, will be temperature dependent. Secondly, although the
lowest order perturbation theory calculation and the self-consistent Born approxima-
tion results agree in the value n, = 2, it is still necessary to perform a calculation that
properly takes into account corrections to the in-plane phonons. Finally, it is also neces-
sary to explore the robustness of the obtained results to deformations of the model used
to describe a crystalline membrane. In particular, it is necessary to access the possible
effect of higher order anharmonic couplings, which appear naturally in a geometrical de-
scription of a membrane, namely, of quartic coupling between in-plane and out-of-plane
displacements and of cubic and quartic couplings between in-plane displacements. Nev-
ertheless, the perturbative calculation presented in the chapter is already sufficient to
show that a simultaneous treatment of quantum and anharmonic effects is necessary to
have a vanishing thermal expansion at zero temperature in the thermodynamic limit, in
accordance with the third law of thermodynamics. The present calculation also allows
to estimate the crossover temperature between the classical and the quantum regime
and of the crossover momentum scale between harmonic and anharmonic behaviour in
the low temperature regime.
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CRYSTALLINE MEMBRANE SUPPORT BY A SUBSTRATE

3.1 INTRODUCTION

In the previous chapter, we have seen how anharmonic effects play a fundamental role
in the elastic and thermodynamic properties of free (under zero stress and decoupled
from other systems) crystalline membranes, such as graphene and other 2D crystals.
While the physics of suspended samples of 2D crystals will be controlled by anharmonic
effects, the picture will be drastically different for samples supported by a substrate. In
this scenario, it will be the coupling of the 2D crystal to the substrate, and not intrinsic
anharmonic effects, that will dominate the low energy long wavelength physics of the
2D crystal. As a matter of fact it has been know since the early 90’s [101-104] that
the phonon dispersion relation of supported graphene samples is greatly affected by the
substrate, depending on the coupling between the substrate and the graphene overlayer.
The presence of the substrate breaks the out-of-plane mirror symmetry of an isolated
monolayer, which will have a particularly strong effect in the dispersion relation of the
out-of-plane acoustic phonon (also commonly referred to as flexural) of the graphene
overlayer.

We have also seen in the previous chapter that the thermal expansion of a crystalline
membrane is greatly dependent on the dispersion relation of the out-of-plane phonons
of the membrane. Therefore, provided the dispersion of the out-of-plane phonon is
significantly altered, coupling of the membrane to a substrate should play an important
role in the thermal expansion of a membrane.

In more recent times, numerical solutions of the Boltzmann equation for phonons,
indicate that the thermal conduction in graphene is dominated by out-of-plane acoustic
phonons [105]. It was found experimentally [106] and theoretically [107], based on
molecular dynamics calculations, that the thermal conductivity of supported samples
is significantly reduced when compared to the one of suspended samples. The lifetime
of the out-of-plane phonons is also significantly reduced due to the coupling of the
graphene layer to the substrate [108]. Thus, it is necessary to have a good understanding
of the properties of the flexural phonon of graphene samples supported by a substrate.

In this chapter, we study the effect of coupling to a substrate in the dynamics of
the flexural phonon of a crystalline membrane. The chapter is organized as follows.
In Section 3.2, we introduce a minimal model Hamiltonian, based on elasticity theory,
that describes the coupled system of crystalline membrane and substrate. We focus
on the effect of the substrate on the membrane flexural phonon. In order to study the
spectral properties of the membrane flexural mode, taking into account its coupling to
the substrate degrees of freedom, we introduce a dissipation function in Section 3.3 and
compare the results of our model with phonon dispersion data for graphene on top of
different substrate obtained via HREELS in Ref. [103]. In Section 3.4, we also study
the effect of coupling to the substrate for the membrane out-of-plane fluctuations and
thermal expansion, finding that both quantities become substrate dependent. Finally,
in Section 3.5 we summarize the results from this chapter.
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Substrate

Figure 3.1: Schematic representation of coupling between a membrane and the substrate that
supports it, Eq. 3.8.

3.2 MODEL OF CRYSTALLINE MEMBRANE COUPLED TO A SUBSTRATE

In order to describe a crystalline membrane coupled to a substrate we will use a contin-
uous description based on elasticity theory. This approach is suitable to describe the
long wavelength and low energy lattice dynamics of the coupled system. We consider
a crystalline membrane supported by a semi-infinite flat substrate that occupies the
half-space z < 0. Employing a canonical quantization formalism, the Hamiltonian of
the coupled membrane-substrate system can be written as

H = Hout + Hin + Hsubs + Hcoup7 (3'1)

Where Hyy + Hin is the Hamiltonian describing the isolated crystalline membrane,
Hgps is the Hamiltonian describing the substrate and Hoyp is the coupling Hamiltonian
between the membrane and the substrate. Hoyu+ Hiy has the same form as Eq. (2.81) of
the previous chapter but in real time. However, the anticipate that the coupling to the
substrate will play a much more important role than intrinsic membrane anharmonic
effects. We therefore neglect anharmonic terms in Eq. (2.81) and obtain

2
Hoye = /d2x (”h + %n (62h)2> , (3.2)

2p

H, /d2 ™ L (3.3)
in = x| — 4+ =c"uu |, .
in 29 9 ij Wkl
where once again p is the mass density (per unit area) of the membrane, & is the bending
rigidity and ¢* is the elastic moduli tensor. A is the out-of-plane displacement field
and u;; = (Oju; + O0ju;) /2 is the linear strain tensor, with u the in-plane displacement
field. The canonical conjugate momenta for h and u are, respectively, 7 and 7, obeying
the equal time commutation relations

[h(x), m,(x)] = 6@ (x — %), (3.4)
[ui(x), Wj(x')] = iéijé(Q) (x—x), 4,5 =x,v.

The Hamiltonian for the long wavelength acoustic modes of the substrate half-space is
described within linear elasticity theory as
72

(T 1_
Hgys = / a3z (25 + 2Ca5758aU8,5a’Yus,5> ) (3.6)
2<0 P3D
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’ ‘ g [102°N m~—3] ‘ wo [meV] ‘ Yo [meV] ‘

SiOy | 1.82[113] 10 9
hBN | 1.2-2.7 [114] 10 15
TaC | 20.23 [103] 34 14
HfC | 21.72 [103] 35 18
TiC | 23.82 [103] 37 32

Table 3.1: Membrane-substrate coupling parameter g for different materials and computed gap,
wo Eq. (3.68), and dissipation, v9 Eq. (3.70), parameters.

where 7 = (x, 2), us o is the displacement field for the substrate, with 7 o, the conjugate
momenta. p3p is the mass density per unit volume of the substrate and &£ is its
elastic moduli tensor, with Greek indices running over the x,y, 2z coordinates. u  and
s, Obey the canonical commutation relations

[us,a(f), 7T57a(:i"/)] = 10030(L — 7)), o, =1y, 2 (3.7)

Since the out-of-plane phonons of graphene are the most affected by the substrate
[101-103, 109-111] and assuming that the fluctuations around the equilibrium distance
between the substrate and the membrane are small, we consider a quadratic coupling
between the out-of-plane displacements of the membrane and the substrate [112], which
reads

Heonp = 2 / % (h(x) — s, (x,0))?, (3.9)

with ¢ a spring constant per unit area coupling the membrane and the substrate. The
model is schematically shown in Fig. 3.1. The value of the constant g greatly varies
from substrate to substrate (see Table 3.1). It was estimated in Ref. [113] to have a
value of 1.82 x 10%°J/m* for graphene on SiOy. For graphene on hBN its value can
be estimated from density functional theory (DFT) calculations [114], to be around
1.2 — 2.7 x 102°J /m*, depending on the orientation of graphene on hBN. For the (111)
surface of transition metal carbides it is of the order of 2 x 1021J/m*, while for the (001)
face is approximately zero [103], as it is for graphene on platinum (111) [104, 111].

3.2.1 Green’s function for membrane-substrate coupled system

Having neglected anharmonic effects in Eq. 3.3, the in-plane and out-of-plane modes
of the crystalline membrane become completely decoupled. Using the commutation
relations Eqs. (3.4) and (3.7) we obtain the coupled Heisenberg equations for motion
for the membrane out-of-plane and the substrate displacement fields

(—p0} — kO* — g) h(t,x) = —gii.(t,x,0), (3.9)
(—pgpéaﬁﬁf — L*3(9) — 95255(2)> us g(t,x,2) = —gh(t,x), (3.10)
where we have introduce the acoustic differential operator

LoF(9) = —&189,0,. (3.11)
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We now introduce the retarded membrane-membrane and substrate-substrate Green’s
functions

Df (t,x; ', x') = —i0(t — ') {[h(t,x), h(t',x)] ), (3.12)

Df (t,x,2;t',x',2)) = —iO(t — 1) <[u57a(t,x, ), us p(t', %, z’)]> , (3.13)

guf
and the membrane-substrate mixed Green’s function
D;ffug (t,x;t',x',2") = —iO(t — ') ([h(t, %), us,a(t',x)] ), (3.14)
D%h(t, x, z;t',x') = —iO(t —t') <[us7a(t, x, 2), h(t, X’)]> . (3.15)
For the components of the Green’s function only involving the membrane out-of-plane
displacement we will use the notation DE(t,x;¢',x') = DE (¢,x;t',x"). The Heisenberg

equations of motion, Eqgs. (3.9) and (3.10), imply that the Green’s functions obey the
coupled equations

—p0} —kO* — g go**d6(z) ‘
g —p3pd10Z — L (9) — g6*5*75(2)
Dz{i(t,Xa t/’X/) D:;;B(tﬂx;t,aX/)Z/)

R Y R Y Y
Dugh(t,x,z,t,x) Duzuf(t,x,z,t,x,z)

1 0

=6(t —t)d(x —x') [ 0 5905(=— )

] . (3.16)

The problem is greatly simplified by introducing the Green’s function in the absence of
coupling, g =0,

DY = (—pd? — k"), (3.17)
-1
Do, = (—pgDaaﬁaf - Laﬁ(a)) . (3.18)

The problem is further simplified by taking advantage of translation invariance in the
x — y plane and in time, by introducing the Fourier transforms

D (W) = / dt / d*xete™*DE(1,x;0,0), (3.19)

R 2, iwt —iqx R

Do g% 2 = /dt/d xe“le—d xDuEug (t,x,2;0,0,7), (3.20)

and similarly for the mixed Green’s functions. With these definitions and noticing that

Eq. (3.16) only couples the membrane to the z components of DR& s at z =2 =0, the
u

s

equations of motion for the Green’s function become

(D8) ™ - ’

-1
0,R
Y (Dugug,q(w)> -9

. Dl}%q(w) Dﬁﬁé,q(w’o) |t (3.21)
D o 1]

wehg(@,0) Difyz g(w)
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’ ‘ p3p |g/cm3| ‘ c11 |GPal ‘ c12 ‘ €13 ‘ 33 Ca4 ‘ K, |GPa| ‘ vR |m/s ‘
SiO9 2.20 78 - - - 31 37 3392
LBN 2.28 811 [115] | 169[115] | 0 [115] | 27 [115] | 7.7 [115] 14 1835
TaC 14.65 | 634 [116] ] - ~ | owspuiel | 285 3525
HfC 12.27 500 [116] - - - 195 [116] 234 3681
TiC 4.94 500 [117] | 113 [117] | - - s | 228 5453

Table 3.2: Mass densities and elastic constants for different possible substrates: SiOs, hBN
and the transition metal carbides TaC, HfC and TiC. The transition metal carbides
where approximated by isotropic materials using constants ¢11 and cy4: the data for
TaC and HfC was taken from polycrystalline samples (Ref. [116]) while for TiC only
the constants cjyand cyq are used. The Rayleigh velocities, vr, are computed from
the zeros of Eq. (3.55). K is obtained from Eq. (3.64).

where we have written Dg’g}i?q(w) = Dgig}flg,q(w,z = 0,2/ = 0). The bare flexural

phonon propagator is given in Fourier components as, see also Eq. (2.98),

1
pw? — k|q|* + sgn(w)iot

Dyi(w) = (3.22)

The Green’s function for the flexural mode tacking into account the coupling to the
substrate can be obtained from Eq. (3.21) and we write it as

1

DE () = , (3.23)
“ pu? — ki |q|t = TIR ()
where w) 18 the seli-energy induce the substrate
h Hﬁq is th If- gy induced by th b
g
7 (w) = - . (3.24)
1- gDu%u§7q(w)

Therefore, provided we know the substrate Green’s function, Dg’;;q(w), Eq. (3.23)
provides a simple expression for the membrane flexural Green’s function in the presence
of the substrate. We point out that obtaining the membrane flexural Green’s function
from Eq. (3.21) is equivalent to the procedure of integrating out the substrate degrees
of freedom. Therefore, in order to describe the properties of the out-of-plane membrane
vibrations we just need to know the Green’s function of the isolated substrate.

In order to have a complete description of the membrane flexural mode coupled to a
dynamic substrate, we are still lacking the knowledge of Dg;]iz,q(w). We will compute
it in the next section in the case of a uniaxial elastic materiai such as hexagonal boron
nitride.

3.2.2  Green’s function for isolated uniazial substrate
We wish to determine the form of Dg’;z?q(w, z =0,2" = 0) for a semi-infinite substrate.
In order to do this we use the fact that in a quadratic theory, such as the one defined
by Eq. (3.6), the quantum mechanical retarded Green’s function coincides with the
classical Green’s function', since they both obey the same equation of motion. In our

By classical Green’s function we mean the mathematical definition of Green’s function as the inverse
of a linear differential operator
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case, both the quantum mechanical Green’s function and the classical one, obey the
bulk equation of motion

(—pgD(SM@f — L*7(9)) Dg’fzﬁ q(t, x, 2zt %', 2") = 6p0(x — x')0(2 — 2). (3.25)
In order to determine the Green’s function of a semi-infinite elastic substrate we must
introduce boundary conditions at z = 0. Instead of doing that, we will instead use
the fact that the Green’s function relates an induced displacement field to a time and

—

position dependent applied pressure, f(t,x), at z =0 by

g o(t,x,2) = —/dt'/dQX'Dg;iﬁ(t,x,z;t’,x',O)fﬁ(t',x'), (3.26)

which can be understood as the integral from of the boundary condition in the presence
of f(t,x) at z = 0. We also point out that Eq. (3.26) is just the Kubo formula for linear
response (see Appendix B) applied in the context of linear elasticity theory, due to a

term added to the Hamiltonian Eq. (3.6) of the form

Vi(t) = — / d*x f(t,x) - i, (x,0). (3.27)

We also point out that for a quadratic theory and if the external source couples linearly
to the dynamical degrees of freedom, the response to the source is always linear, that
is, Kubo formula is exact. Therefore in order to determine teh quantum mechanical
Green’s function, Dg’gfzg,q’ we just need to study the response of the substrate to an
external pressure at z = 0.

The displacement induced by the external pressure _)(t,x) at z = 0, dusq(t, x, 2),

obeys the bulk equation of motion for z < 0,

(—pgDaaﬁaf _ [P (a)) Sug 5(t, @, z) = 0. (3.28)

—

In the presence of the external pressure f(¢,x) at z = 0, we have the boundary equation
B (0)us g(t,x,0) = f(t,x). (3.29)

with the boundary condition differential operator defined as
BP(9) = 1By, (3.30)

In order to proceed, we must specify the form of the substrate elastic tensor, &#79.
We will focus on uniaxial materials (also refereed to as transverse isotropic or polar
anisotropic), which are isotropic with relation to rotations along a single axis, the c-
axis. Crystals with hexagonal symmetry fall into this category [79]. A uniaxial material
has 5 independent elastic constants. These are conveniently expressed in matrix form
using Voigt notation

c11 C12 €13 0 0
C12 €11 €13 0 0
cry = 13 c13 €38 0 0 , (3.31)
cqe O 0
0 cyu 0
| 0 0 0 0 0 (611—012)/2 1
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where the Voigt indices I, J which run over {1,2,3,4,5,6} and correspond to the pairs
of spacial indices {zz,yy, zz,yz, zz,xy}. Therefore, in Voigt notation, c¢13 corresponds
to ¢**##, for example. In the case of an isotropic substrate, the 5 constants are reduced
to two: c11 = ¢33 = )\1351% + 2,u§355, Clo = C13 = gs]%, Cqq = uigsg, with 150 and ,ulso Lamé
coefficients for a isotropic 3D material. Therefore, for an uniaxial materlal, the acoustic
differential operator L*?(9) is explicitly given by

— L*%(9) =
c110% + 5 (c11 — c12) 02 + 4402 % (c11 + c12) 9,0, (c13 + ca4) 0,0,
3 (c11 + c12) 9,0, 3 (c11 — €12) 02 + 110} + c440? (c13 + caq) 040
(013 + C44) 0,0, (613 + C44) 8yaz C44 (8§ + 85) + 03383

(3.32)

and the boundary condition operator becomes

64462 0 644693
B*” (a) = 0 €440, C44ay . (3.33)
c130; c130y ¢330,

It is useful to take into account the translational invariance of the problem along the
x — y plane and write the induced displacement field in terms of Fourier components
n (t,x) variables as

d2 ;
0tus(t,x, z) / / w,q, z)e” Wheldx, (3.34)

such a representation is usually refereed to as angular spectrum representation in the
field of optics. We also present the external pressure in Fourier components

/ /d2 Flw, q)e—ioteiax, (3.35)

With this representation, the linear response relation Eq. (3.26) becomes

Ousa(w,q,2) = DOR[3 q(w,z,O)fﬁ(w,q). (3.36)
S S

Since we are dealing with isotropic system in the x — y plane, we can focus, without

loss of generality, on the situation with q = (0,q). With this considerations, the

displacement field obeys the bulk equation of motion

(pngQCSO‘ﬂ — L% (q, 8;;)) dus g(w,q,z) =0, (3.37)
with
% (c11 — c12) ¢ — C448§ 0 0
L*(q,0.) = 0 c11¢> — cas0?  —i(c13 + caa) g0
0 —i(c13 +caa) @05 caaq® — 3302

(3.38)
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The external pressure at z = 0, will generate acoustic waves (which can be propagating
or evanescent) that propagate away from the interface. Therefore, we can look for a
solution of the form

3

8lis(w,q,2) = D &c(w, q)dus c(w, g)e F=c0, (3.39)
¢=1

where 0%, ¢(w, ¢) are mode amplitudes, labelled by the indice ¢, with polarization vec-
tor &¢(w,q) and wavevectors along the z direction given by k. ¢(w,q). The different
k. ¢(w,q) are obtained as the solutions of the secular equation

det [png%aﬁ — L°8(q, —ikz)} =0, (3.40)
and the polarization vectors are obtained as the solutions of
[png%aﬁ — L°8(q, —ikz)} &l (w,q) = 0. (3.41)

From Eq. (3.40) we obtain three possible solutions for k2, and therefore six solutions
for k,. From these six solutions and taking into account causality, we choose the
three solutions which describe waves propagating away from the interface. These three
solutions are given by

B B? .
k. 1/2(w,q) = sgn(w) Bl + w4~ C + sgn(w)i0t, (3.42)

2 _
ke(w,q) = sgn(w)y [ 22— L2 02 4 son(w)iot, (3.43)
Ca4 2c44
where
2 2 2
c w cC w c13 + ¢
g <p3D _qz) 4 cu <P3D _qz) L (s +en) 2. (3.44)
Ca4 C11 C33 Ca4 C33C44
2 2
C = 11 (Pspw - q2> <P3Dw B qz) . (3.45)
€33 C11 Ca4

In the definition of k, ¢(w,q) the pre-factor sgn(w) ensures that for real k. ;/5(w,q),
Eq. (3.39) represents waves propagating away from the interface. If the square root in
k. ¢(w,q) becomes imaginary the term under the square root sgn(w)i0" ensures that the
solution is an evanescent wave, which decays into the substrate bulk, z — —oo (recall
the general replacement rule for obtaining retarded Green’s functions w — w + i07).
The (not normalized) polarization vectors are given by

0
EI/Q(WaQ) = al/Q(W,Q) y é’)(w’q) = 0 3 (346)
1

where

(c13 + caa)qk. 1 /2(w, q)
a1/2<w7Q) =T 9

. 3.47
w? —cr1q? — 6447?3,1/2(% q) (3.47)

Notice that the mode ¢ = 3 is a pure shear mode, being a transverse mode with polar-
ization vector always lying in the x — y plane. The polarization vectors corresponding
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to ( = 1,2 lie in the plane of incidence of the acoustic wave, and are a mixture of lon-
gitudinal and transverse mode. For an isotropic substrate, these two modes, { = 1,2
become, respectively, transverse and longitudinal modes. From Egs. (3.39) and (3.46)
we can write the displacement field at z = 0 as

1 0 0 dus 3(w, q)
0tis(w,¢,0) = | 0 ai(w,q) as(w,q) || dus1(w,q) |- (3.48)
0 1 1 dus 2(w, q)

Using this equation together with the boundary condition Eq. (3.29), we can relate the
mode amplitudes 1 ¢ (w, ¢) to the pressure f as

—iC44kZ73 0 0 5“5,3 Ie

0 —icyskz 101 + icaaq  —icask. 202 +icaaq | | Ousy | = | fY

0 ici3qar — icazk,  ici3qaz — ic3sks o O 2 I?
(3.49)

We invert this relation in order to express the mode amplitudes dus ¢(w, ¢) in terms of
f and then use Eq. (3.48) to obtain a linear relation between dus(w, q,0) and f(w, q).
Comparing the obtained relation with Eq. (3.36), we can read off the different elements
of Dg’R (w) for z = 2’ = 0 and obtain the non-zero components for q = (0, q):

oul q
Difial®) = =om—, (3.50)
Dg’gﬁg’q(w) = —Z'C?’Mg (a2k,q —aik.2), (3.51)
Dgﬁg,q(w) = _iaﬁ laraz (k22 — k2 1) + q (a2 — a1)], (3.52)
Dg’;gg(w) = —ﬁ [c33 (k21 — k22) — c13q (a1 — a2)], (3.53)
Dg’;zg,q(w) = —2'(;‘;74 (agk.2 —aik. 1), (3.54)

where we have defined the function
M = c44 (q — k2 a2) (c13qa1 — c33kz1) — caa (¢ — kz101) (c13qag — c3zk.2) . (3.55)

We point out that for a general wavevector q = ¢ (cos#@,sinf), Do’f s (w) can be
Ugus,q

obtained, appealing to in-plane isotropy, by performing an in-plane rotation of the

0,R
tensor Dﬁ’

i q=(0.q) (w). However, in our case we do not need to perform such rotation

as we are only interested in the Dg’;g’q(w) component, which is not affected by the

rotation. For an isotropic substrate, D%E (w) simplifies to

uiuZ,q

0,R . ([ p3pw 2 k.1

DN () =—i (B2 ; , (3.56)
Hap (kz - q2> + 4q2kz,Lkz,T
where
2
P3DW .

k = — g2 0+, 3.57
z,L Sgn(w)\/)\gsg + 2#?3 q + sgn(w)z ( )

2
k.r = sgn(w)\/’osli)sf —¢? +sgn(w)i0t, (3.58)
3D

%)
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are the wavenumbers along the z direction for longitudinal and transverse sound waves
and we reobtain the result from Ref. [118].

Now we will study the information contained in Dgéﬁ;q(w) and in k, ¢(w,q). We
notice that the condition kic(w, q) = 0, makes the transition between propagating and
evanescent waves, split the region in the (w,q) space which supports a continuum of
bulk states from the region where there will be no bulk states. For the shear mode
¢ = 3, the continuum of bulk states exist for

w> L2 |q| , continuum for ¢ = 3, (3.59)

2p3p

in which case Ing’;i?q(w) = (. For the polarizations ( = 1 and 2, and assuming that

€11 > c44 which holds for most materials, we obtain that the continuum of bulk states
exists for

w> [ |q|, continuum for ¢ =1, (3.60)
P3D
c11 :

w > ,/—|q|, continuum for ¢ = 2, (3.61)
P3D

and ImDZ’R (w) # 0 for a and B in the plane of incidence. For

ouf q

( w >2 < min ((e11 — ¢12) /2, c44, €11) (3.62)

@ P3D

the semi-infinite substrate does not support bulk modes, that is, modes that propagate
in the bulk with real &, ¢(w,q). It is however possible to obtain a localized surface
mode: the Rayleigh mode, which will have a linear dispersion relation: wrq = vr|q|,
with vy the velocity of the Rayleigh mode. The dispersion relation of the Rayleigh
mode can be obtained from the zeros of the function M, which correspond to poles in

DO’RB (w). This divergence only occurs in the components of D% 5 (w) that lie in
ugus,q S Us

the plane of incidence defined by the directions of q and z, which indicates the Rayleigh
mode polarization lies in the plane of incidence.
Finally, we study two important limits of DO’RB (w), namely the zero momentum
uQuy,q

s sy

limit and the static limit. For the zero momentum limit, we have

lim D% ot .
ql—>n10 U?usﬁaq(w) w+/pP3DC33 ’ (3 63)

while in the static limit we obtain

1
lim D*?, (w) =

- 3.64
w50 ugul K. Ja|’ (3.64)

where K, is a constant that depends on the elastic constants of the material. For an
isotropic material, K, reduces to

20855 (5 + i)

KZ = Aiso 9 iso
3D T 213D

(3.65)

Knowing the form of Dgisfig,q(w) and having a complete understanding of the modes
of a semi-infinite elastic substrate, we are in a position to study the properties of the

flexural mode of the membrane coupled to the substrate.
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3.3 SPECTRAL PROPERTIES OF FLEXURAL MODE

Notice that if the substrate is considered static (limit of infinite density and elastic
constants) the membrane flexural Green’s function reduces to

1

DR w) = 9
Fal®) pw? — kgt — g + sgn(w)i0+

(3.66)

meaning that the flexural phonon dispersion relation is modified from wrq = 1/ |q|* /p
to

wiEped — %lql“ +u?, (3.67)

becoming gapped for q — 0, with a gap given by

wi="Y. (3.68)

p
However, for a dynamical substrate, this gap will fall into the bulk continuum of states
of the substrate, which will act as a dissipative bath and induce a finite lifetime for
the membrane flexural mode. Using the q — 0 limit of the substrate Green’s function,
Eq. (3.63), the self-energy of the flexural mode induced by the substrate, Eq. (3.24),
becomes

MR () = p0 (02— 3.69)

Ralt) = o2 (w0 — i), 5.

where p
= — 3.70
0 vV €3303D ( )

is a constant that characterizes the lifetime of the possible gapped flexural mode at
q = 0. Looking for solutions of

pw? — Reﬂﬁo(w) =0, (3.71)

we find out that for wg > g the previous condition is satisfied for

w=1/wd — 13, (3.72)

and therefore, we see that the dynamics of the substrate reduce the zero momentum
frequency of the flexural-gapped mode when compared with Eq. (3.67). For wy < 70, the
flexural-gapped mode is not well defined. The ratio vo/wo = v/gp/ (c33psp), indicates
how strong is the damping of the flexural-gapped phonon by the substrate. The greater
is the membrane-substrate coupling and the smaller is the mass density and elastic
constants of the substrate, the stronger will be damping of the flexural-gapped phonon.

Besides the emergence of a broadened flexural-gapped mode, the flexural mode of
the membrane will also hybridize with the Rayleigh surface mode of the substrate,
which was also pointed out in Ref. [107]. This hybrid flexural-Rayleigh mode will only
occur bellow be continuum of bulk states of the substrate, w < /caa/p3p |q|, where
ImD%u;q(w) = 0 and consequently Imﬂﬁq(w) = 0. The dispersion relation of the
flexural-Rayleigh mode, wrg g, is obtained from the condition

pw%R,q =K ]q]4 + Reﬂﬁq(wFR’q). (3.73)

o7



58

CRYSTALLINE MEMBRANE SUPPORT BY A SUBSTRATE

Close to the dispersion relation of the flexural-Rayleigh mode, (w,q) ~ (wrrq,9q) ,
Dﬁq(w) can be approximated as

1 Zrr(q)
DE == , 3.74
where ) 9
71 =1— —— — Rell® 3.75
rr(@) 2w g 0w ellg(Wrr.q), (3.75)

is the weight, or field strength, of the flexural-Rayleigh mode on the membrane and in-
dicates to which extent the hybrid flexural-Rayleigh mode is localized in the crystalline
membrane (and not in the substrate).

All the spectral information regarding the dynamics of the membrane flexural mode
coupled to the substrate can be encoded by defining a flexural mode dissipation function
as

Ap(w,q) = —2prmD£q(w). (3.76)

This quantity is a good spectral function. First, it is positive defined,
Ap(w,q) >0, (3.77)

and, secondly, it satisfies the sum rule

T dw
/ —Ar(w,q) = 1. (3.78)
oo 2T

Both these properties can be easily proved using a Lehmann representation for Ing q(w).

Using a complete and exact eigenbasis {|n)}, we can write ImD}I% q(w) as

D (w) = _% (e—BEn - e—ﬁEm) (0] hq |m)[2 8 (w+ En — En).  (3.79)

n,m

Using the fact that w (1 — e=#*) > 0, one obtains that the Conditionwale}%q(w) > 0.
Furthermore, we also have that

— 2prmDﬁq(w) =
2w _ B
=02 S (7 — P (B — ) (nl g m) (m| hq [n) & (0 + By — E)
2
— —77-‘- (e_ﬁEn _ e_ﬁETVL) <n’ p [H, hq] ’m) <m| hfq |n> 5 (u} —|— En —_— Em) . (380)

Using the Heisenberg equation of motion hq = i [H, hq| = Tp,q/p and integrating over
frequency we obtain

T dw 1 _ _
| i Ar = 5 3 (¢ ) (g ) (] g )

oo Z oyt
= i ([Thqs h—ql) - (3.81)
Using the canonical commutation relation, |7y, q,h—q] = —i, we obtain the sum rule

Eq. (3.78). The spectral function also provides information about how the system will
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Figure 3.2: Density plot of the flexural mode dissipation function and field strength of flexural-
Rayleigh mode on the membrane as a function of q for a graphene layer on top of a
SiO9 substrate. (a) Density plot of the flexural mode dissipation function (in units
of 27p/wd) for a graphene layer on top of a SiOs substrate. The dashed red line
show the flexural-gapped dispersion relation, Eq. (3.67), and the solid cyan line
shows the dispersion relation of the hybridized flexural-Rayleigh mode, which is
determined by Eq. (3.73). The dashed cyan line represents the dispersion relation
of the Rayleigh surface mode. Above the yellow dashed (w = +/cs4/p3pq) the
substrate has a continuum of bulk states. (b) Plot of the field strength of the
flexural-Rayleigh mode in the membrane, Zrgr(q), and of the spectral weight of
flexural-gapped mode. The some of both contributions adds to 1 according to the
sum rule Eq. (3.86). The dashed red and orange dashed lines represent, respectively,
la| = vrv/p/(2K), around which Zpg(q) is maximum, and |q| = vg+/p/k, above
which the hybridization between the membrane flexural mode and the substrate
Rayleigh mode becomes less important.

dissipate energy that is injected in it by an external force. As a matter of fact, if we
act on the membrane with a time-dependent external force, f(t,x),

2 . .
f(t,x) = / g&fwo(q)eiq‘x (e7"0t 4 g0ty | (3.82)

which couples to the membrane as
Vi(t) = - [ dxs(t.xnt) (3.83)
then the average energy dissipated over a period 27 /wy is given by

dE d*q
_ / > 2w0lmDE  (wo) | fun (@)

dt (2)
1 d?
-2 / (27;;2AF<wo,q> o (@) (3.84)

For a given q, for w close to fwprp g, the dissipation function displays a J-Dirac
divergence, being given by

AF(w,q) = WZFR(q)é(w:FwFqu). (385)
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Figure 3.3: Density plot of the flexural mode dissipation function (in units of 2vy/w?) for
graphene on top of different substrates: (a) TaC, (b) HfC and (c) TiC. The squares
represent experimental data for the dispersion relation of graphene phonons on
the three substrate obtained via HREELS in Ref. [103]. The insets show the field
strength of the flexural-Rayleigh mode on the graphene membrane. The dashed
cyan, black and yellow lines represent respectively w = vgq, w = \/ca4/p3pq and

W= C11/P3DQ-

Therefore, the sum rule Eq. (3.78) implies that

oo dw
Zen(@) + [ L Ap(w,q) = 1. (3.36)
\/644/P3D|Q| ™

In Fig. 3.2, we plot the flexural mode dissipation function, the dispersion relation of the
flexural-Rayleigh mode and its weight, Zpgr(q), for a graphene membrane on a SiO,
substrate. It can be see that for small values of momentum the spectral function is very
broad, due to the coupling of the membrane to the continuum of bulk substrate modes,
with the flexural-gapped mode being very poorly defined. Furthermore, we see that the
membrane flexural mode and the substrate Rayleigh mode are more strongly coupled
for values arround |q| ~ vg+\/p/(2K), around which Zpr(q) reaches a maximum, and
becomes less important for |q| > vry/p/k. The suppression of the flexural phonon for
small momenta has been observed in Ref. [103], where the phonon dispersion relations
for graphene on different transition metal carbides was measured using HREELS. In
Fig. 3.3, we compare the spectral function obtained from of our model with experimen-
tal phonon dispersion of Ref. [103]. Although our model fails at large momenta, as
expected for a continuous model, it semi-quantitatively explains the lack of experimen-
tal data for the flexural mode at low momentum for graphene on lighter substrates (see
the different mass densities for the substrates in Table 3.2), since the phonons become
ill defined as quasi-particles. Also notice that experimentally there are indications of a
Rayleigh mode. Our model predicts that just by probing the graphene overlayer it is
possible to detect the hybrid flexural-Rayleigh mode. If this is the case or if what is
experimentally seen comes from the fact that the first few layers of substrate are also
being probed is not clear.
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Figure 3.4: Plot of for the out-of-plane mode correlation for graphene on top of a SiOs substrate
function at zero frequency, Dﬁq(O), as a function of the momenta. Also shown are

small, ~ |q| ™", and large, ~ |q|~*, limiting behaviours of Dﬁq(O).

3.4 OUT-OF-PLANE FLUCTUATIONS AND THERMAL EXPANSION

3.4.1 Height-height correlation function

The same time height-height correlation function is given in accordance with the fluctuation-

dissipation theorem (see Appendix C) by:

hw
coth <M> ImDﬁq(w). (3.87)

In the high temperature limit, we have coth (hw/ (2kpT)) ~ 2kpT/ (hw) and using
Kramers-Kronig relation we obtain the classical result

2

(h(x)h(0)) ~ —kpT / (3732 ¢ I*ReDE (0). (3.88)

Due to the coupling of the membrane to the substrate, from Eqs. (3.24) and (3.64), we

obtain at low momenta )

_Kz |Q|7

which is exactly the same result as for the substrate Green’s function. This result shows
that at long-wavelengths the behaviour of the membrane is completely determined by
the substrate, for which we also have D%ug,q(()) = —(K.|q|)™", Eq. (3.64). This result
is different from what would be obtained if we treated the substrate as static, in which
case we would obtain limg_o Dﬁq(O) = —1/g. At smaller wavelengths the membrane

. R o
(llli% DF,q(O) -

(3.89)

on a substrate behaves as a free membrane and we obtain Df‘h’q(O) ~ —|q|™*. This
results are demonstrated in Fig. 3.4.
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For large distances, using Eqgs. (3.88) and (3.89), we obtain at high temperatures

(hG)h(0)) = "L [ dgq sy (q 1x1) DE,(0)

kgT 1/x
= 2K, Jy
kT
= K, x|

(3.90)

a result that is independent of the membrane-substrate coupling, g, and that coincides
with the result for the bare substrate surface out-of-plane displacement, (us .(x,0)us (0, 0)).
For the quadratic dispersion relation of flexural phonons, it is known that <h2(0)> di-
verges at any finite temperature. In Fig. 3.5 it is shown <h2(0)> as a function of tem-
perature for two different substrates. At high temperature, <h2(0)> is approximately

given by
knT 3/4,.1/4
(R(0)) = -7 T(g . ) (3.91)
21 /Kg K,

being proportional to the temperature in accordance with the classical theory, and with
the function 7" (z) defined as

& du
T(x):/o m (3.92)

This function has two limiting cases: 7 (0) = /4 and 1" (z) ~ 2%/321/(3V/3) for z > 1;
from which we obtain

kT 3/4,.1/4
(h?(0)) ~ Vi g <<KZ. (3.93)
kT 93/4ﬁ1/4 > K
3V3(kK2)Y3 N

It is interesting to notice that for small g, it is found the same result as if one completely
ignores the dynamics of a substrate [119].Using the values in Tables 3.1 and 3.2, we
obtain ¢%/4k'/4 /K, ~ 0.9, for SiOy, and g3/4li1/4/KZ ~ 2.4, for hBN , such that none
of the limits actually dominates. The behaviour of <h2(0)> with temperature, taking
into account quantum effects is show in Fig. 3.5. As it can be seen, the out-of-plane
fluctuation is larger for graphene on a hBN substrate than for graphene on an SiOq
substrate. This can be explained by Eq. (3.93), which predicts that for a substrate
with smaller K (see Table 3.2) (h?(0)) is larger.

3.4.2 Thermal expansion

As discussed in Chapter 2, the thermal expansion is zero in a purely harmonic the-
ory. Therefore in order to compute the thermal expansion of a supported membrane
we must include anharmonic effects at some level. We will assume that anharmonic
effects are not significantly affected by the coupling of the membrane to the substrate
and that therefore the dominant anharmonic terms for the membrane are the same
as for a free membrane and given by Egs. (2.38) and (2.39). However, while a free
membrane is a strongly anharmonic system, for a supported membrane intrinsic mem-
brane anharmonicities will be suppressed due to the long wavelength behaviour of the
substrate induced self energy, Eq. (3.24), limg—0 Hﬁq(w) = K, |q|. Therefore, in order
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Figure 3.5: Plot of the average same-site out-of-plane displacement fluctuation as a function of
temperature for graphene on top of hBN and SiO; substrates. The solid lines take

into account quantum fluctuations, while the dashed lines show the high tempera-
ture classical result.

to describe the thermal expansion in a supported membrane, a QHA treatment of an-
harmonic effects will be sufficient. The thermal expansion of a supported membrane is
thus still given by Eq. (2.210)

ImDZ (w), (3.94)

h? /dwqu lq? w
aa

kpT? (2”)3 4 sinh? (%)
but with Dﬁq(w) the harmonic out-of-plane mode Green’s function taking into account
the coupling of the membrane to the substrate, Eq. (3.23). As shown in Eq. (3.79),
we have that wImDﬁq(w) < 0 and therefore Eq. (3.94) predicts a negative thermal
expansion just as in the case of a free membrane. Just as in Eq. (3.88), in the high
temperature limit we can approximate sinh (fuw/(2kpT)) ~ hw/(2kpT) and use the
Kramers-Kronig relation to obtain the thermal expansion in the high temperature,
classical limit, which is given by

2 R
as 2n)? la|” ReDp (0). (3.95)

Performing the integration in momentum we obtain

kg gAlAkL/A
~——U —_— .

where ¢p is the Debye momentum and we have defined the function

A duu?
Iy (2) = /0 T By ot (3.97)
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Figure 3.6: Plot of the of areal thermal expansion of a graphene membrane supported by two
different substrates, hBN and SiOs, as a function of temperature. The solid lines
take into quantum effects and are given by Eq. (3.94), while the dashed lines are
the high temperature classical limit given by Eq. (3.95). The dashed black line rep-
resents the high temperature thermal expansion for a free membrane as estimated
from Eq. (3.99).

This function has two limiting behaviours: @, (0) = log (1+ A*) /4 and ¥ (z) ~
log (1 + A3x) /3, for x > 1. Therefore, we obtain two limiting cases for the thermal
expansion

" 167k

4
kp oo <1+MJTD> PR < K

ay ~ (3.98)

5 .
kg log (1 + '}%’) , 93/451/4 > K,

T 127k

Close to room temperature one obtains a value in the order of —6 to —7 x 1076 K1
This is to be compared with the estimation for the thermal expansion of a free crystalline
membrane at high temperature [96], Eq. (2.202),

kp 16%/@3/2,01/2
~ 1 3.99
@A 8k 08 ( 3hYsp ’ ( )

which gives a higher thermal expansion ~ —10~° K~!. In Fig. 3.6, we show the thermal
expansion of graphene supported by two different substrates as a function of tempera-
ture. As it can be seen, graphene on hBN has a larger thermal expansion than graphene
on SiO9. This can be explained by the smaller value of K, for the hBN. Also notice
that the thermal expansion tends very slowly to the high temperature limit given by
Eq. .(3.95), which is understandable, given the high Debye temperature of graphene,
Tp ~ 1000 K.

3.5 CONCLUSIONS

In this chapter, we have studied the lattice dynamics of a crystalline membrane that is
coupled to a substrate, focusing on the out-of-plane mode of the membrane. In doing so,
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we carefully took into account the dynamics of the substrate and therefore considered
the coupling of the membrane flexural mode with the substrate low energy acoustic
phonons.

Since the substrate, a half-space elastic medium, supports, in general, both a con-
tinuum of bulk modes and a surface Rayleigh mode, the effect of the coupling of the
membrane out-of-plane mode to the substrate will be twofold. (i) Coupling to a static
substrate will give origin to a gap in the dispersion relation of the membrane flexural
mode, which will behave as a low energy optical phonon at long wavelength and as a
free membrane flexural mode for small wavelengths. This flexural-gapped mode will lie
within the continuum of the substrate bulk modes, which will act as a dissipative bath
for the flexural-gapped mode, giving origin to a finite lifetime and possibly making the
flexural-gapped mode at long wavelengths very poorly defined. Our model predicts
that the softer and lesser dense the substrate, the more ill defined the flexural-gapped
mode will be. (ii) The membrane flexural mode also couples to the substrate surface
Rayleigh mode, with which it will hybridize. Since the Rayleigh mode is an isolated
mode (and not part of a continuum), the flexural-Rayleigh mode will have an infinite
lifetime. The hybridization between the surface Rayleigh and the membrane flexural
mode will be strongest for momenta |q| < vry/K/p, where vg is the Rayleigh mode
velocity.

We compared our model with experimental HREELS dispersion relations of graphene
phonons on different transition metal carbides of Ref. [103]. In agreement with our
model, lighter substrates make the flexural-gapped mode less well defined leading to an
inability to resolve experimentally this mode at long wavelengths, which is described in
our model by a very broad dissipation function. Furthermore, and in agreement with
our model, experimental data also shows signs of a Rayleigh mode, although it is not
possible to determine whether this is due to the hybridization of the flexural-Rayleigh
mode or due to the fact that the substrate is being directly probed in the experiments.

We also studied the out-of-plane fluctuations and the thermal expansion of a mem-
brane on top of a substrate. We found out that both quantities are made finite by
the coupling of the membrane to the substrate, which completely dominates the long
wavelength behaviour of the membrane. As expected, for weaker couplings between the
substrate and the membrane, both quantities become larger. In the limit of weak cou-
pling, both quantities become independent on the elastic constants of the substrate and
the results are the same as for a membrane coupled to a static, infinitely massive and
stiff, substrate. In the limit of strong coupling between membrane and substrate, the
results become independent on the membrane-substrate coupling constant but become
dependent on the elastic constant of the substrate K. In this limit, the smaller K, the
greater are the out-of-plane fluctuations and the thermal expansion. We find out that
the thermal expansion of graphene on top of two commonly used substrates, SiO2 and
hBN, is around —6 to —7 x 1076 K~! at room temperature, respectively. Therefore,
this work shows how properties, in this case lattice dynamics, of 2D crystals, which for
bulk materials are generally thought of as intrinsic properties, are greatly affected by
their environment.
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CONDUCTIVITY OF GRAPHENE ON A SUBSTRATE:
FLEXURAL PHONON EFFECTS

4.1 INTRODUCTION

The quality of a material as an electric conductor is generally described in terms of the
carrier mobility, which is defined as

pe = 729 (4.1)

)
en

where opc is the DC conductivity, n is the carrier density and e is the electronic charge.
Graphene was found to be a remarkable conductor, with intrinsic mobilities as high as
200000 cm?V~!s~! at room temperature having been inferred from experimental data
[120, 121]. Such mobilities would outperform all known semiconductor materials [122]
and even semiconducting carbon nanotubes [123], the previous record holder.

However, the intrinsic value of mobility is never possible to achieve due to the un-
avoidable presence of disorder. For graphene, this is specially true and the obtained
mobility depends not only on the quality of the graphene sample, but also on the kind
of device that is used. Therefore, while samples of graphene on a SiOy substrate dis-
play typical mobilities of . ~ 10000 cm?>V~ts~! for electronic densities of n ~ 10'2
cm ™2 [34], graphene samples on hBN substrates with mobilities as high as j. ~ 100000
cm?V~1s™! have been reached for n ~ 10 ecm™2 [124], a value which is further in-
creased for graphene samples encapsulated in hBN [125].

Another possibility is to consider suspended graphene samples [126-128]. In sus-
pended samples, by eliminating scattering sources due to the substrate, such as corru-
gations due to substrate roughness [129] and scattering by substrate phonons [130, 131],
increased mobilities as high as 120000 cm?V~!ts~! around room temperature have been
achieved [127]|. However, significant spread in data was observed, with similar samples
displaying a room temperature mobility nearly an order of magnitude lower [128]. It
was soon realized that in suspended samples another source of scattering could play a
significant role: scattering by flexural phonons [132]. Scattering by flexural phonons
was found experimentally to be one of the dominant sources of scattering at room tem-
perature in suspended samples [35]. Scattering by flexural phonons gives origin to a
resistivity that scales with temperature as 72 at high enough temperatures [35, 36],
which is characteristic of a scattering process involving two phonons. This dominance
of scattering by flexural phonons is explained by their quadratic dispersion relation,
Wrq X |a|?, which leads to extremely low energies for long wavelength phonons, giving
origin to a diverging resistivity. The contribution of flexural phonons to graphene resis-
tivity is therefore extremely sensitive to perturbations that might cause a modification
of the long wavelength dispersion relation of flexural phonons, such as tension. Some
residual tension is unavoidable in suspended samples and the reported variations in
their conductivity have been attributed to changes in this tension [35-37]. Scattering
by flexural phonons also plays a dominant role in suspended bilayer samples for weak
tensions [133].

While the importance of scattering by flexural phonons has been well established
in suspended graphene samples, its effect in supported samples is generally neglected
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(b) :

Figure 4.1: Graphene’s crystalline structure and reciprocal lattice. (a) Graphene’s crystalline
structure. The unit cell is represented by the pink shaded rhombus and the A and
B carbon sites are represented by the blue and red disks, respectively. The Bra-
vais lattice basis vectors {aj,as} are represented by blue arrows and the nearest
neighbours vectors 7,, a = 1,2, 3, are represented by green arrows. (b) Graphene’s
reciprocal lattice. The 1BZ is represented by the pink shaded hexagon. The recip-
rocal lattice basis vectors {by, by} are represented by the blue arrows and the blue
dots represent reciprocal lattice sites. The positions of the high symmetry points
I, K, K' = —K and M are also shown.

[134], based on the assumption that flexural phonons are quenched by the coupling
to the substrate. In this chapter, we study in detail the effect of scattering by flex-
ural phonons in graphene samples supported by a substrate. By using the results of
the previous Chapter 3, we correctly take into account both the gap opening in the
dispersion relation of the flexural phonon (flexural-gapped phonon), with associated
broadening by the continuum of substrate bulk phonons, and the hybridization of the
flexural phonon with the substrate Rayleigh surface mode (flexural-Rayleigh phonon),
with associated linearisation of the dispersion relation. In Section 4.2, we review the
basics of the graphene physics, namely its electronic structure and description of low
energy electronic degrees of freedom via a continuous massless Dirac equation. This
section will prove to be essential not only for this chapter, but also for the follow-
ing two Chapters 5 and 6. In Section 4.3, we describe the electron-phonon interaction
Hamiltonian for coupling between electrons and in-plane acoustic phonons and between
electrons and flexural phonons. In Section 4.4, we compute the resistivity of graphene
due to scattering by phonons employing the Kubo formalism in the quasi-elastic ap-
proximation and in the limit of high electronic doping. We consider both the effect of
acoustic in-plane and flexural phonons. We end this chapter by discussing the obtained
results in Section 4.5.

4.2 BASICS OF GRAPHENE ELECTRONIC PROPERTIES
4.2.1 Crystalline structure

Graphene is formed by a single layer of carbon atoms with sp? hybridization arranged
in a honeycomb structure. As such, the crystalline structure of graphene forms a
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triangular Bravais lattice with two atoms per unit cell, generally referred to as A and
B sites. The Bravais lattice is spanned by the basis vectors

a; = ag (;, ?) , (4.2)

ar = ag (—;, \ég) , (4.3)

where ag ~ 2.46A is the lattice parameter of graphene, which is related to the nearest-
neighbour carbon-carbon distance by acc = ag/ V/3 ~ 1.42A. The unit cell of graphene

as an area given by Acen = \/§a§ /2 ~ 5.2A%. The nearest neighbour vectors are given

by
=t (f—;) , (1.4

™ =—(0,1), (4.5)

3 1
Y _i,_, . (4.6)
V3 2 2
The reciprocal lattice of the graphene triangular Bravais lattice is spanned by the basis
vectors
4 31
by 7 (V3 1) (4.7)
V3ag \ 272

47 V31
e (52 "

with the first Brillouin zone (1BZ) being an hexagon. The crystalline structure of
graphene and the corresponding 1BZ in reciprocal space are represented in Fig. 4.1

4.2.2 Band structure and Dirac Hamiltonian

The electronic properties of graphene are dominated by its zero gap linear dispersion
relation around the corners of the 1BZ. There are two inequivalent corners: the K and
the K’ = —K points, with the K point located at
by —by Ar

K 3 = 30 (1,0). (4.9)
This was first recognized in 1947 by Wallace [135], while modelling the band structure of
graphite using a tight binding Hamiltonian. Although DFT ab initio methods are now
standard tools in Condensed Matter, there are still advantages in employing the simpler
tight binding method when describing the band structure of a material. First of all, the
tight-binding method provides an economical description of the system Hamiltonian,
often in terms of a few parameters, which can be tackled by analytic methods. Secondly,
tight-binding Hamiltonians will, by construction, correctly encoded all the symmetries
of a given crystal, which in a numerical ab initio method is not always easily guaranteed.
The electronic properties of graphene are dominated by the p, orbitals of the carbon
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atoms, with the low energy states (in the sense of states close to the Fermi level of
neutral graphene) being located close to the K and K’ points of the 1BZ. These two
facts allow for a simple description of graphene in terms of a single parameter nearest-
neighbour tight-binding Hamiltonian [135], which proved to be immensely successful
in the description of graphene [136]. In a second quantization formalism the nearest-
neighbour tight-binding Hamiltonian of graphene reads

H =t 3 (0h, a¥Rotran + U, yr p¥Raa ) (4.10)

n,a

where t ~ 2.8 €V is the nearest-neighbour hopping, w;r,% A/B (YR,,.4 /B) is the creation
(annihilation) operator for an electron in a p,-like orbital in the carbon atom located at
position R,, in A/B sublattice. We have omitted the spin degrees of freedom as spin-
orbit effects in graphene are very weak [137]. Expressing the creation (annihilation)
operators in Fourier components

1 il 1 -
w;”“A = ﬁ26 ZkRan‘LAA? an,A = ﬁZeZkRnwk,A; (411)
Kk Kk
1 ik 1 k.
¢I1n+.,.a73 =% Ze ik (R”JFT“)%T(,B, YR, +10,B = TN Z ek (R"+T“)1/Jk,B, (4.12)
v k v Kk

where N is the number of unit cells in the crystal, the tight-binding Hamiltonian
becomes

H=Y | Hy (4.13)
K

where we have introduced @blt = [ ¢;’< A zpf{ B } and

H=| Y | (4.14)
—tye 0
with
3 .
M=y e (4.15)
a=1

The spectrum of this Hamiltonian is given by

ex, ) = At k]

ky 3k
= At |3+ 2cos (kgag) + 4 cos ( 2ag> Ccos <\f29a‘5>, (4.16)

with A = +1. In neutral graphene, only the states with A = —1 are occupied. For this
reason the, A = —1 band is the referred to as the valence band and the A = +1 as
the conduction band. The tight binding Hamiltonian Eq. (4.13) is diagonalized by the
eigenstates (written in the A /B sublattice basis)

1 1
KA = — , 417
e \@[m’i/lvkll (1D
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Figure 4.2: Electronic band structure of graphene. (a) 3D visualization of graphene dispersion
relation. (b) Dispersion relation of graphene along the TKMTI path represented in
Fig. 4.1 (b). The dashed line represents the linearised dispersion relation around
the K point. The shaded region represents the states that are occupied in neutral
graphene.

Introducing the creation operators for an electron in the conduction and valence bands
as

Pl=> vl (kA (4.18)
A
Y= [k A) Y (4.19)
A
The Hamiltonian can then be written as
H= 3" et (4.20)
kA==+1

The dispersion relation given by Eq. 4.16 is shown in Fig. 4.2. At the K and K’ = —K
points, we have ex—1k » = 0, with the valence and conduction band touching. In the
spirit of k - p theory, expanding the Hamiltonian Eq. (4.14) around these points by
making the replacement k — 7K + k, with 7 = £1 for states around the K and K’
respectively, we obtain to linear order in the momentum

0 Thy — iky

(4.21)
Thy + ik, 0

Hk,TK =wvph

where

_ V3tag
- 2n
is the Fermi velocity of graphene with a value of vp ~ 1x10~%m/s [136]. Equation (4.21)
has the form of a massless Dirac equation and can be written as

VR (4.22)

Hy g =vphk - o, (4.23)
Hy _x = —vphk-o”, (4.24)
where o = (04, 0y) is a 2D vector of Pauli matrices. For this reason the K and K’

points are generically referred to as Dirac points. In the Dirac approximation, the
dispersion relation Eq. (4.16) becomes

exx = vphlk]. (4.25)
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The linearised dispersion relation is shown in Fig. 4.2(b) where it is compared with
the full tight binding dispersion relation Eq. (4.16). From there we see that the linear
dispersion relation is a good approximation up to energies of ~ 0.5t ~ 1.5 eV. The
eigenstates of the Dirac Hamiltonian Eq. (4.21) are given by

1 1
k,7,\) = — ) , 4.26
| T > \/5 [ FAeim0x ] ( )

where 6y is the angle formed between vectors k and K. In the reference frame we
have chosen, K = K, (1,0) (with Ky = 47/ (3as) see Eq. (4.9)) and we can write
e« = (ky + iky) /|k|. The Hamiltonians given by Egs. (4.23) and (4.24) can also be
promoted to a continuous real space Hamiltonian by replacing the quasi-momentum k
by the differential operator k — —¢V and writing the electronic operators as

e
) VA

where A = NAcen is the area of the graphene crystal. Doing this we obtain the real
space continuous Hamiltonian that describes states close to the K point

Via e kX (x), a = A, B, (4.27)

Hyg = —ivph / d*xvp’ (x)o - Vap(x), (4.28)

where ¥T(x) = [ ¢L(X) q/;j%(x) ] is the graphene electron creation operator in real

space for electrons close to the K point. For states close to the K’ point we must replace
o — —o* in Eq. (4.28).

We point out that there is nothing remarkable in the fact of the low energy electronic
properties of graphene being governed by a Dirac like equation. As a matter of fact,
a Dirac like equation is the simplest description of two coupled bands in terms of a
k - p theory [138]. Therefore, any direct gap semiconductor will have in general a
low energy description in terms of a (massive) Dirac equation. What is special about
graphene is the fact that the low energy physics is described by a massless Dirac
equation. Furthermore, in the absence of spin-orbit interactions which are week in
graphene [137], the Dirac points are robust against perturbations, and the opening of
a gap is protected by the discrete symmetries of time reversal and spacial inversion
[139, 140].

4.2.3 Density of states

The fact that graphene has a linear dispersion relation at low energies makes it a
semimetal: a material which displays no gap but in which the density of states goes
to zero at the Fermi level. This can be easily seen by computing the density of states
within the Dirac model. The density of states is given by
DoS(w) = JsJv 0 (w—exn)
N Acell KA
jwl
o (vph)?’

= 9sGv (4.29)

where g; = 2 is the spin degeneracy and g, = 2 is the valley degeneracy (that takes
into account the existence of two inequivalent Dirac points). The density of states
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Figure 4.3: Density of states of graphene computed using the full tight binding dispersion
relation (solid line) and the linearised dispersion relation around the Dirac points
(dashed line).

of graphene computed using the linear dispersion relation, Eq. (4.21), and the full
tight binding dispersion relation, Eq. (4.16), is shown in Fig. 4.3. Once again, it is
seen that the Dirac model provides a good description for energies up to ~ 0.5¢ ~
1.5 eV. Integrating the density of states from 0 to the Fermi energy, ¢r, we obtain the
relation between Fermi energy and the electronic density, n, for pristine graphene at
zero temperature
b

7 (vph)?

This relation can also be written as ep = sgn(n)vphkp, with the Fermi momentum
kr = |lep|/ (vph), being related to the electronic density by

kp = +/mn|. (4.31)

4.2.4  Density and current operators

n = sgn (ep) (4.30)

The density operator, course grained over the unit cell and considering only the K
valley, can be written for graphene as

p(x) = ¥l (x)¥a(x) + D} (x)¥p(x)
= ' (x)9(x). (4.32)

Using the Dirac Hamiltonian, Eq. (4.28), and the Heisenberg equation of motion, it is
a simple exercise to obtain the continuity equation

Op(x) +V-J(x) =0,
where the current operator is given by

I(x) = vptp! (x) o (x). (4.33)

(0]
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In order to obtain the charge density and charge current operators one just has to
multiply Eqgs. (4.32) and (4.33) by the electron charge —e. Very frequently it will be
useful to write the density and current operators in Fourier components

1 .
o) = = Y, (430
q
1 .
Jx) = > elxg,, (4.35)
q
Changing the electron operators to the eigenbasis of the Dirac Hamiltonian, Eq. (4.28),
1 .
P(x) = —= Y F¥ |k \) i, (4.36)
VA%

with |k, A\) given by Eq. (4.26) (with 7 = 41, since we are focusing on the K valley),
the Fourier components of the density and current operators are written as

Y
Pa = D ParrqPhatkian (4.37)
k
AN
Jqg = Z Jk,k+q¢1]:7)\wk+q,)\’7 (4.38)
k,
with J ﬁi:r q = VF. ‘]ﬁﬁ; q and we have introduce the density and (dimensionless) velocity
matrix elements
’ 1 X
Pkt = (kA k+aqN) =7 (14 eihinta), (4.39)
’ 1 . . . .
ikeq = (KAlolk+qX) = 5 (Ae’wk + Nelra j)e i — iA’e’9k+Q> (4.40)

We will use these expressions frequently.

4.2.5 Electronic Green’s function

The retarded electronic Green’s function in the sublattice basis is defined as
Gl (t.) = =60 (t = 1) ([ta (0,0, ()] ) (4.41)

Using the Heisenberg equation of motion for the annihilation operator, it is easy to see
that the Green’s function obeys the equation

0
<i6t - Hk> Gi(t.t)=6(t—1). (4.42)
This can be written in Fourier components as
dw —Zw 4/
Glhac(1:0) = [ 553G ), (4.43)

where GE | (w) is given by

K, \) (k, A|
GR — | ) )
abk () )\21 w+ 0T — ek z

_ Z 5ab+)\f<'o'ab (444)
—t1 w + 10t — €k,
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Using the form of the graphene Dirac eigenstates, Eqs. (4.26), the Green’s function in
the sublattice basis can also be written as
wld +vphk - o

Gic () = (@ + 072 — (vph)2 (K] (4.45)

This form will be specially useful in Chapter 6.

4.3 ELECTRON-PHONON COUPLING IN GRAPHENE

Within the continuous Dirac approximation for graphene electrons, the interaction
between low energy electrons close to the K point and acoustic phonons close to the I'
point can be described by the Hamiltonian {129, 136, 140-144]

He phx = g1 /dQXiﬁT(X)TP(X)%i(X),
oo [ do (V0T - Au). (1.46)
where ~;;(x) is the relevant strain tensor, Eq. (2.17),
i (%) = % (O4uj + Oju; + 0;hO;h) (4.47)

and A (x) is a vector potential like term given by

Ao (x) = (Y22(x) — 'Yyy(x)a _2’73331()()) . (4.48)

For graphene electron states close to the K’ point, o should be replaced by o* in
Eq. (4.46). We notice that in the electron-phonon interaction Hamiltonian Eq. (4.46),
the in-plane displacement fields appear linearly, while the out-of-plane displacement
field appears quadratically. This is a bit unusual as in most materials electron-phonon
interaction is only described in terms of a linear coupling to the phonon degrees of free-
dom [95]. However, in graphene, the appearance a linear term in h in the Hamiltonian
is forbidden due to the discrete z — —z mirror symmetry of graphene. Since the p,
orbitals are symmetric under z — —z and h changes sign under z — —z, a linear term
in h cannot occur. When graphene is placed on a substrate, a case we will be consid-
ering, the mirror z — —z symmetry is broken and therefore a linear term in h would
be allowed. Nevertheless, we will assume that the coupling to the substrate is weak
and therefore will neglect such effects. Although it is possible to write more general
interaction Hamiltonians between graphene electrons and acoustic phonons [145, 146],
Eq. (4.46) includes all the terms with the lowest number of derivatives of the electronic
fields and of the strain tensor [147].

The first term in Eq. (4.46) describes the deformation potential interaction, which
describes the change in the local potential felt by electrons under a homogeneous con-
traction/dilatation of the crystalline structure and is present in any material [95]. The
constant ¢y is the bare deformation potential. Its value for graphene has been esti-
mated using a nearly free electron model yielding a value of g; ~ 20 — 30 eV [141],
while DFT calculations yield a value of g ~ 3 eV [148] or negligible [149]. These
contradicting results have been reconciled by pointing out that since the deformation
potential interaction is a coupling to the electronic density, it will be subject to screen-
ing |35, 36, 133, 150, which is not considered in the estimation of Ref. [141]| and will

7
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substantially reduce the effective value of g;. Taking into account static screening
effects, the effective deformation potential is related to the bare one by

g1

-9 4.49
1 —VaXxq ( )

gLeff(q)

where Vg = €%/ (2¢0]q|) is the 2D Fourier transform of the Coulomb interaction and
Xq is the static (w = 0) irreducible density-density response function. In the limit of
small q, xq reduces to xq >~ —DoS(er), where €p is the Fermi energy. For graphene,
using Eq. (4.29) we obtain xq ~ —2kp/ (mvph), a result that in graphene is valid not
only in the g — 0 limit, but actually up to |q| < 2kp [151] (see also Appendix E) ,
which as we will later see is exactly the region we will be interested in. Therefore, the
effective screened deformation potential becomes

g1
1+ VqDOS(EF)
g1
= 4.50
I (4:50)

gre(q) =

where k7 is the Thomas-Fermi screening momentum for graphene which is given by

krr = aggsgukr, (4.51)

where oy = €2/ (4meguph) is graphene’s fine structure constant.

The second term in Eq.(4.46) appears in systems with threefold rotational invariance
for electronic states close to the K and K’ points also being present in other system
besides graphene such as bilayer graphene [133| and transition metal dichalcogenides
[152]. Although it is possible to derive this term purely on symmetry grounds [143],
it is instructive to obtain it within a tight-binding approach which will also allow for
an estimation of the gsoconstant. The vector potential like term can be derived by
assuming that lattice distortions lead to a local modulation of the hopping integrals in
a tight-binding description of graphene [141]. Therefore, instead of Eq. (4.10) we write

H=- " to(Rn,Rn+7)Vh VR, +rs (4.52)

n,a,b,c

where now t4;, (R, Ry, + 7¢) depends on the relative distance between the sites R,, and
R, + T, a,b run over the A and B sublattices and 7. are the nearest-neighbour vector.
In the presence of a distortion the position of the lattice sites are changed to

R, = Rj + i (R)) (4.53)
R,+7.— R +7. 41 (R% + 7e) (4.54)

where RO are the positions of the undistorted lattice and  is the displacement phonon
field. The displacement field encodes both in-plane and out-of-plane displacements,
which we write as 4 = (u, h). For small lattice distortions we can expand the hopping
as

t
tap (R, Ry, + 7¢) _t+§gA€ (RE)”R%JFTC)’

where Al (R), R + 7.) is the change in bond length

AC(RY,RY +7.) = \/(r + (RO +7) — 7 (RY)) — | (4.55)
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Therefore, we can write Eq. (4.52) to lowest order in A¢ as H ~ Hy + Hgogﬂ, where
Hj is the bare electronic Hamiltonian given by Eq. (4.10) and
ot
st~ 5 5 (gt o (RS o) 1) (430

n,a

Writing the electronic operators in terms of Fourier components as in Eqs. (4.11) and
(4.12) and writing the change in bond length as

1 e
ACRYR) +7,) = = > et RAT2) AL (7,) (4.57)
n? n \/N q B
we obtain
gogﬂ - Z ¢k+q E?&—ncik : ¢k7 (458)
with @ﬁ‘jrnéik given by
ot 0 eik+q/2)-7a
bond __
Pk =~y ) Ala(T) [ ka2, . : (4.59)

So far, this discussion is general and we have made no assumption regarding the displace-
ment phonon field. We will now specialize to the case of acoustic phonons for which the
displacement field changes slowly between nearest-neighbours allowing us to approxi-
mate the difference that occurs in Eq. (4.55) by a derivative: @ (RgL + Ta) —u (Rg) ~
72051 (RY). Therefore, we obtain

AC(RY,RY +7,) ~ \/7-3 +27irlei; (RY) — |7al . (4.60)
with £;; (RY) the full strain tensor, Eq. (2.15),

€ij (R?L) = (8,~uj + 8jul- (Rg) + o (R?L) . 8]6 (Rg)) . (4.61)

N

Neglecting the quadratic contribution from the in-plane displacement in Eq. (4.61) this

reduces to the relevant strain tensor Eq. (4.47). For small distortions we can further
approximate '
]

Al (R, R +7,) =~ ﬁ%j (R?). (4.62)
a

With these approximations, the electron-phonon interaction matrix, Eq. (4.59), can be

written as

0 eik+a/2)Ta

bond . T Ta
Pitak = ag%J q Z ol | e—ilkta/2)m, 0 . (4.63)

Since we are interested in electronic states close to the Dirac points, K and K’, and
long wavelength phonons close to the I' point, we approximate q ~ 0 and k ~ +K in
the arguments of the exponentials in the previous equation. With this approximation
and performing the sum over nearest neighbour lattice vectors we obtain

fa ot
CI)EiHCi = 4 g((%( Yaz,a + Vyyar 2Vay.q) - O (4.64)

79



80

CONDUCTIVITY OF GRAPHENE ON A SUBSTRATE: FLEXURAL PHONON EFFECTS

and for states close to K’ we just replace & — o*. In real space within the continuous
approximation, Eq. (4.64) becomes the second term in Eq. (4.46) with the constant go
given by

3 UFB
= ——tB=— 4.65
g2 4 2aCC ) ( )
where we have introduced B as Slogt
0og
= — . 4.
5 Olog/ (4.66)

In order to evaluate B, we can employ Harrison’s argument [153, 154, which states
that the hopping between two orbitals with total angular momentum [ and [’ should
scale with separation distance, 7, as

I+1'+1
ro) : (4.67)

i (r) = to < .
such that B;y =1+ 1’ + 1, as thus, for graphene’s p, orbitals we would obtain B = 3.
Other estimates for B give B = 2 - 3.6 [141], while DFT calculations yield B = 2.5
[149]. Using the value of B = 2.5 we obtain go ~ —5.2 €V.

As previously said, Eq. (4.46) describes electronic coupling both to in-plane and
flexural phonons and while the in-plane modes couple linearly to the electrons, the
flexural phonons couple quadratically. In the following, we will describe both cases in
a unified way by writing the electron-phonon interaction as

1 AN,
He—ph,K = ﬁ Z ¢k+q§kwl+q’)\wk,)\'v (468)
k,
)\J\g,C

where qﬁﬁi‘;’gk is an appropriately defined phononic field, with A and A’ running over

the conduction and valence bands and { = L, T, F', for the longitudinal, transverse and
A

flexural modes. In the following we will specify the form of qﬁl’l;r:fk for each case.

4.3.1 Coupling to in-plane phonons

Focusing on the K valley, from Eq. (4.46), the interaction Hamiltonian between elec-
trons and in-plane phonons is given by

He wx =0 /delﬁT(X)iﬁ(X)@;ui(X)

+ 92 / @2 (W ()P (x)) - (Dtta (%) — Dy (), ~Dyty (%) = Fyruz (x)
(4.69)

Writing the electronic operators in terms of operators that diagonalize the bare Hamil-
tonian as in Eq. (4.36) and writing the in-plane phonon field as

1 QX -
u(x) = —\/X Z e'T*ieq cuq,c (4.70)
q,¢=L,T
where eq ¢ are the in-plane longitudinal and transverse polarization vectors

qx Qy
eqr = (L ) 471
: <|q| |q|> (4.71)

€qT = <_qy qz) ) (472)

lal” |q]
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the electron-phonon Hamiltonian becomes

1 AN
He-uk = > At qa o (4.73)
k:
/\,/\261

with the phononic field for in-plane modes defined as

AN, AN
¢k+q7ck = Mq,k Cuq,C’ ¢=L,T, (4.74)

where we have introduce the electron-phonon interaction matrices

AN, AN
Mq,k ¢ = _gl,eﬁ(Q)Pk+q7kq " €q,¢

W
~ 92 k1qk (qyceg,g - deg(a _Q:peg’c - deg,g) ) (4.75)

with pﬁ’_{_\;’k and jﬁi‘;?k given by Egs. (4.39) and (4.40) and we have included the effect
of screening to the deformation potential, Eq. (4.50). Notice that for the transverse
mode we have that q - eq7 = 0 and, therefore, the interaction between this mode and
the graphene electrons is only described in terms of the coupling to the effective elastic
vector potential, Eq. (4.48). Therefore, we write more explicitly

AN L AN AN i

Mgy =—la| [gLeﬂr(q)kar%k + 92Ji gk - (cos20g, —sin20q) |, (4.76)
AT N ;

MT = — lal gadule s - (— sin 20, — cos 204) | (4.77)

where we have written q = |q| (cos fq, sinfq).

4.3.2  Coupling to out-of-plane phonons

The coupling of graphene electrons to the flexural phonon mode can be read from
Eq. (4.46) and we obtain

Hone = [ 61 (0% ()0 ()01 )

+ g;/d%; (W(X)Ml)(x)) (02 h(x)0ph(x) — By h(x)Dyh(x), —20,h(x)d,h(x)) .
(4.78)

If we once again write the electron operator in terms of the Dirac Hamiltonian eigen-
states, Eq. (4.36) , and writing the flexural phonon field as

h(x) = \/12 D e Xy, (4.79)
q

the electron-phonon Hamiltonian Eq. (4.78) can be written as

1 AN F
He_ppx = 7i E ¢k’+(i,k¢11+q7k¢k,,\',
k,q,p
AN

with the composite phononic field for flexural phonons defined as

e L AN, F
¢k+q,k - 9J/A zpj qup,p,khq—phm (4.80)
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and the electron-flexural phonon interaction matrix element given by

AN F POV
My ok = —91et()P gk (A—P) - P

WY
— 92 qx (@2 — P2) P2 — (y — Py) Py, — (42 — P2) Py — (4y — Py) Pz) -
(4.81)

We are how in a position to compute its contribution to graphene’s DC conductivity.

4.4 DC CONDUCTIVITY IN THE QUASI-ELASTIC APPROXIMATION

We wish to compute the DC conductivity of graphene when this is limited by intrinsic
electron-phonon scattering. In particular, we will be interested in the scattering by
flexural phonons, when graphene is supported by a substrate. As we saw in Chap. 3,
in this situation the flexural phonons of a membrane can no longer be treated as well
defined quasi-particles due to the strong hybridization and damping by the substrate
phonons. In this situation it is note possible to adopt a Boltzmann like approach to
the electron-phonon scattering, where both the electrons and the phonons are treated
as well defined quasi-particles. We therefore employ a method based on the Kubo
formula for the electrical conductivity, see Appendix F. There we that in the limits of
weak scattering and high doping, ep > kpT, the DC conductivity can be written as,

Eq. (F.80), ) |
€ T
ReUDC:AZ< k)ﬁi(
k

where 747 (ek) is the transport time and we have assumed that graphene is highly doped
with electrons. In the low temperature limit, kg7 < €p , we can further approximate
—0f(ex)/0ex =~ 0 (ex — €r) and the DC conductivity is given by

a) LTI (4.82)

1
Reopc =~ §€2DOS (ep)vETl, (4.83)

where we have made use of the isotropy of the system to write the conductivity as a
scalar. Using Eq. (4.29) we can write the resistivity, which is related to the conductivity
b -1
Y PDC = Opg, 88
h m 1

—_—— 4.84
e2vpkp T (4.84)

pPDC =

where 7F is the transport time at the Fermi level. In the limit of elastic scattering the
transport time is given by Eq. (F.77),

trl() = ;Z/dw (1 — cos O xtq) (b(w) + f(e +w))A{; {jjgk( )6 (W — ercrqs +€)

(4.85)
where the quantity A Py tigk (w) is a spectral function, which for a generic electron-
phonon interaction Hamiltonian of the form of Eq. (4.68) is defined as

Ag,lﬁia (w) = /dteiwt < [¢k k-‘,—q( )s ¢k+q7 (0 )] > (4.86)

The transport time given by Eq. (4.85) can be compared with the particle scattering
time, from which it differs due to the extra 1 — cos fy k44 factor. This term suppresses
events where the electronic momentum is scattered by a small angle, which do not lead
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to a degradation of the electronic current. The transport lifetime at the Fermi level,
T}r, is obtained from Eq. (4.85) by setting |k| = kr and € = ep,

=7 Z / dw (1 = cos i serq) [b(w) + fler + w)] Agitd) (W) 6 (W — €wtq +€F).
Ui

(4.87)
Tacking into account that typical phonon frequencies are much smaller than the Fermi
energy we can further set w = 0 in the energy conservation Diracé-function obtaining?

1
P} Z / dw (1 = cos i k1q) 714;,11:12 k(@) 0 (er —€xiq).  (4.88)
TF sinh (k T)

In the above expression both the momentum k and k+ q are pinned to the Fermi level.

Using this fact and writing k - q = — |k||q| cos # we obtain the useful relation
4l
0=—. 4.89
cos T (4.89)

Using this into Eq. (4.88) we can use the d-function to write the summation over g
(after turning into into an integration) as

[ st - 25 4 /HW
(2m)? ie+a) W) Vw2 orhg

2k
27‘( Uph/
1_ 2kp

where we have written u = cos 6 and used the fact that Eq. (4.89) imposes the restriction
la] < 2kp. Furthermore, we use the fact that the angular term 1 — cos 6y kyq, When
both k and k 4+ q are pinned to the Fermi level, can be written as

(4.90)

1 —cosbxxiq = (Zl) ) (4.91)

we can write the transport time as

! AR () (4.92)

1 1 2k dq i 2 P 1
Ttr - 27_‘_ 2 v h 0 2 kF . W ¢7k+q7
F o (2m)7op /1_<ﬁ) Smh(kBT)

This is as far as we Can progress on general grounds without specifying the form of
A;lﬁigk( ). Since A 6 lﬁiqk( ) is given by a sum of in-plane longitudinal /transverse
and flexural contributions, we can write the total transport time as a sum

1 1 1 1
_tr = tr + tr + tr - (493)
TR e T TEF

In the following we study each of these contributions.

Notice that the standard Ziman’s formula for the transport time [95], obtained from a variational
solution to the Boltzmann equation, differs from Eq. (4.88) in the sinh (w/ (kpT)) factor, which in
Ziman’s formula is changed to 4kpT sinh (w/ (2kpT))” /w . This difference is of little consequence,
since both expressions coincide in the hight temperature limit. In the low temperature limit, both
expressions predict the same power law dependence with temperature, but the numerical pre-factor
is different. However, we point out that in the low temperature limit, the slightly inelastic nature of
phonon scattering becomes important and both expressions are no longer valid [155].
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4.4.1 Scattering by in-plane phonons

For scattering by in-plane phonons, the field d)k Gtk is given by Eq. (4.74) and the
phononic spectral function Eq. (4.86) relevant for thls case is given by

k.k +, +L T3 r++.L/T
A @) = =M Ty q,k+{; 2ImDf 7, (@), (4.94)

with DE L/T.q (w) the bare in-plane phonon propagator which is given by Eq. (2.99), such

that
T

ImDE/T,q (w) = —;sgn(w)é (oﬂ _ w%/T,q) . (4.95)

Also from Eqgs. (4.76) and (4.77) we obtain the squared matrix elements

ML = 1l 2D (1 cosiprq) + [al? 22 (1 + o8 (Bhrq + b1+ 400)
+ |a? gr.eff (Q) g2 (cos (B + 264) + cos (9k+q +264)), (4.96)
MM = lal” 9% (1 = co8 (Breq + Ok + 464)) - (4.97)

Notice that for an isotropic system, such as graphene, the transport time should not
depend on the direction of the external momentum k. Therefore, and following the
argument from Ref. [133], it is legitimate to perform an averaging over the angu-
lar variable 0y of the above squared matrix elements (while keeping the angle dif-

ferences Oy k+q and by ¢ fixed). Doing this simplifies the squared matrix elements to

+ + LT § r4+,L/T
M, M_§x+q
deﬁned as

— |qf? 7 T (lal), where g2 T (la|) are effective couplings which are

2
72 (la) = g2 @) (1 - (33 ) +3dh (4.95)
3% (1) = 593 (199

where we have written 1 + cos Ok xy+q = 2 (1 —|al*/ (2k:p)> by using Eq. (4.91).
With these definitions, in the limit of elastic scattering, the transport lifetime due to
scattering by in-plane phonons becomes

dw €517 (9)

2k 2
TFL T 27T1)F7i/ <k:F) T ginh (e
/ (i)

For well defined in-plane phonons we can use Eq. (4.95) to write

(4.100)

i 2 C]2£~7%/T (Q) 1

1 / e dg <Q>
T}‘{L/T murh Jo m kr) 2p01/Tq sinh (m‘g’!;’q)

It is easy to see that in the high temperature limit, the inverse transport time and, cor-
respondingly, the resistivity scale linearly with temperature. To see this, we notice that

(4.101)
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for large temperature we can approximate in the previous expression sinh (hw L/T.qlk BT) o~

hwrT.q /kpT, such that we can approximate the transport time by

1 kpT 2 %37 7 (a)

T;{L/T N m}FhQ/O . \2 <k:F) qu)L/Tq '
1 (o)

This approximation is valid provided the energy of the most energetic phonon that
contributes to Eq. (4.101), which is given by hwp, /7 |q|=2k, has a small energy compared
to the temperature. This condition defines the Bloch-Griineisen temperature as

(4.102)

hwpr)qi=2kp  2vLjThkE

Tpa = = 4.103

BG . e (4.103)

which for a typical electronic density in graphene of n = 10'?2 cm™2, corresponding
to a Fermi momentum of kr ~ 0. 028" , corresponds to a temperature of Thg =~

38 or 56 K, respectively for transverse and longitudinal in-plane phonons. Provided
T > Tpca the resistivity due to in-plane phonons will scale linearly with temperature.
This behaviour is clearly seen in Fig. (4.4), where we obtain a resistivity of the order
of ppc ~ 308 at room temperature for graphene with an electron density of n =
10'2 cm~2. Furthermore, we notice that the high temperature limit of the transport
time can be written in terms of the real part of the phonon propagator (see Eq. (2.99))
as

1 kgT /QkF dqu/T

R
e (kp> ReDL/qu(o)). (4.104)
1* %

This result is no accident, but is actually of consequence of applying Kramers-Kronig
relation, Eq. (A.32), to Eq. (4.100) after expanding sinh (w/kpT) ~ w/kpT.

tr
TR.L)T

4.4.2  Scattering by flexural phonons

For scattering by flexural phonons the field ¢ qk s given by Eq. (4.80) and the
relevant phononic spectral function Eq. (4.86) relevant for this case is given by

K k-+ 1 o F ot R A
AF k+((11,k (LU) = ﬂ Z M—q—i—p,—p,k—i—kM p P, kZ (D2F,q—p,p (w) - DQF,q—p7p (w)) )
1

(4.105)
where the retarded/advanced Green’s functions D, lﬁg b, p(w) can be obtained from the
analytic continuation of the Matsubara Green’s function

; 1 g iQnT
Darampplitn) = =5 [ dre™™ (T, ha-p(r)hqsp0) (hp(r)h—p(0)
1
=-3 > Drg-pDrp. (4.106)

After summing over the Matsubara frequency and making the analytic continuation to
real frequencies we obtain

D?F,qu,p(w) = _/ Ci_y (1 + b( )) D}]%qu(w - I/)ImDﬁp(V)

—/Cf:b(w—l/)ImDFq p(w —V)D}I?,p(l/), (4.107)
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Figure 4.4: Resistivity of graphene as a function of temperature due to scattering by in-plane
phonons. We considered electron doped graphene with n = 102 ecm~2 (corre-
sponding to ep = 0.12 eV). We used a bare value of g7 = 25 ¢V and B = 2.5
which corresponds to go = 5.8 V. The linear dependence of the resistivity with
temperature is clear.

with the advanced Green’s function being obtained by replacing the retarded functions
by advanced ones. Therefore, the phononic spectral function Eq. (4.105) can be written
as

k,k+q MEHE et F
AFk+q,k A Z/ q p,pk 7q+p,7p,k+k
X (14 b(v) 4+ b(w—v)) ImDﬁq_p(w - I/)ImDﬁp(V). (4.108)

Using this result in the general formula Eq. (4.85), we write the transport time due to
scattering by two flexural phonons as

dw [ dv
+F g F B
Ttr () A2 Z/ Mq ppkM i p,—picrq (1 — 08 Ok kiq) X
k,F

X d(e,w — v, I/)ImDEq_p(w - I/)ImDﬁp(l/)(s (W — €xtq T+ €), (4.109)

where we have introduced the function

dle,w —v,v) = (b(w) + fle+w)) (1 4+ b(v) + b(w —v))
cosh( )

a 4 cosh (%) sinh ( “jfBT) sinh (W) '

(4.110)




4.4 DC CONDUCTIVITY IN THE QUASI-ELASTIC APPROXIMATION

The squared electron-phonon matrix elements can be written as

2
FF b F 2 2 9ren (Q) )
Moy M Zgp —pitq = 1a =PI [P| 482 (1 + cos (firqx)) cos™ 0g—p,p

+la-pl*p |2g2 (1+ cos (0 + Oicyq + 20g_p + 26p))

+a — p|? p|? o8 Oq—p pg1.ef (Q) g2 c0s (Bi + Oq—p + Op)

+1q = p* [P|* co8 8q—p pgi.c (Q) g2 €08 (it q + Oqp + Op) -
(4.111)

Just as in the case of scattering by a single in-plane phonon, we can perform an average

of the squared electron-phonon matrix elements over the angular variable fx. Doing
- A E g F 2 42 ~

this we can make the replacement M 0\ M0y — |a—p|”[p| g% (lal),

with % (|q|) the effective coupling, which is given by

2
. q 1
g7 (@—p,p) =giea(a) (1 - a1 (4.112)
% 2

Where we have used Eq. (4.91) and neglected a factor of cos? f4—p p that should multiply
gl,eff (q). As we shall soon see, this last approximation is justified by the fact that
the transport time will be dominated by scattering events where the momenta of the
two flexural phonons is collinear, cosfq—pp ~ +1. With these approximations, the
transport time at the Fermi level due to scattering by flexural phonons can be written
in the form of Eq. (4.92) as

1 1 ker dQ Q\*1 2102 52
Tlt[«“r,F - 47Tth/0 m <kF> Azp:’Q_p‘ IpI” 97 (Q — P, P) X
ZkF
+oo g too g
/ d / —Vd (ep,w — v,)ImDE_(w — v)ImDE_ (), (4.113)

where in the above expression Q stands for the total transferred momentum by the two
flexural phonons. The integration over the momentum variable p can be rewritten by
introducing the auxiliary variable q = Q — p, and noticing that the angle between p
and Q can be written as

Q1+ p* - |a|”
2|p/ Q|

This allows to write the integral [d?p = [d|p||p|dfp.q as an integral over |p| and
|q|. The transport lifetime is thus written as

(4.114)

cosfpqQ =

1_ ~2

2kp
TFF a UFh2 / <kF> ar
1- 2kF
// dqdp Qqg.p, (4.115)
\/ (p+q

Q) x

<Q2 (v -a)°)
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where we defined the function

/+oo duw /+oo dy 2 coth ( ) coth (ﬁ) ImDE (w)ImDE (v). (4.116)
Qqp = T cosh ) + cosh ( ’ F7p

and the region R is defined by the conditions ¢ +p > @ and |p—g¢q| < Q. In the
definition of €, ,, we have used the fact that the functions Ile{% ,(w) are odd in w to
reduce the integration only to positive frequencies. Notice that the integration in the
(g, p) variables will be dominated by by the regions with p+ ¢ ~ @, where the momenta
of the two phonons are parallel, cosfp.q = 1, and p — ¢ ~ +@Q), where the momenta of
the two phonons are anti-parallel, cosfp ¢ = —1. This justifies our approximation of
setting cos? 0 q = 1 in Eq. (4.112).

An important point regarded the resistivity due to flexural phonons, is that for non-
interacting flexural phonons in a free graphene layer, the transport time will diverge.
To see this, we notice that if the flexural phonons are well defined, we can write

ImDff g (w) = —%sgn (W) 6 (w® —why) (4.117)

and therefore the integrations in frequency in €2, , can be performed leading to

52 2 coth ( ) oth (Z‘ZZ’Z)

Qgp = (4.118)
(20)* wpgWFp cosh (ﬁw ) + cosh (MF L )
For sufficiently small ¢ and p this becomes
2 (kpT)?
Dpg~ —5—5— (4.119)
PYEPYEp

Since for bare flexural phonons we have wg 4 o ¢, we have that the integration over ¢
and p in Eq. (4.115) would diverge logarithmically for small momenta. This is just an-
other manifestation of the instabilities of the non-interacting model for flexural phonons,
which where already discuss in Chapter 2. We have already seen how anharmonic ef-
fects lead to a reconstruction of the dispersion relation of flexural phonons at long
wavelengths to wr g o ¢?~ /2 with n, > 0, which will make the transport time finite.
In real samples, even suspended ones, there will always be some residual strain, which
for an isotropic strain, will modified the dispersion relation of the flexural phonons to
(see Eq. (2.197))

rai Koo Apa, o
wi%;nedz\/pm\ + ST g (4120)

where (A4 p)a is the isotropic applied stress with @ the relative change of area of
the graphene layer. The applied strain linearises the dispersion relation of the flexural
phonons at long wavelengths, thus making the resistivity finite [35, 133].

While for the case of scattering by in-plane phonons, the resistivity depended on
the temperature linearly, for high enough temperature, for the case of scattering by
flexural phonons the resistivity scales as T2. To see this, we notice that at high enough
temperature the function €, , will behave as

+o0 g, ImDE (w) r+ 4, ImDE (v

, (4.121)
o T w o T w
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Figure 4.5: Graphene resistivity as a function of temperature due to scattering by flexural
phonons when graphene is supported by a SiOs substrate for different values of the
graphene membrane-substrate coupling g. The Full line represents the resistivity
due to scattering by flexural phonons when these are coupled to the substrate. This
contribution is split into processes involving two FR phonons (FR-FR), one FR and
one FG phonon (FR-FG) and two FG phonons (FG-FG). Also shown is the hight
temperature behaviour as given by Eq. (4.122) (high T) and the result assuming
that the substrate is static (Static). The used reference value for g is given by
gsio, = 1.82x10%° N m?3 (see Table 3.1). We considered electron doped graphene
with n = 10'2 em~2 (corresponding to ez = 0.12 eV) and used electron-phonon
couplings given by g; = 25 eV and g3 = 5.8 €V.

which after using the Kramers-Kronig relation can written as

Qg = 2 (kpT)* ReDE (0)ReDE (0), (4.122)
which leads to 1/ T}t{ pxT 2. This T? dependence at high temperature comes ultimately
from the fact that the scattering by flexural phonons, always involves exchange of two
phonons, which is a consequence of the z — —z mirror symmetry of graphene. It is
also worthwhile pointing out that while for scattering by a single phonon the maximum
phonon momentum is limited to 2kp, for scattering by two phonons, while the total ex-
changed momentum is also restricted by 2k, the momentum of each individual phonon
can be much larger than 2k as can be seen in Eq. (4.115). Therefore, in scattering
by flexural phonons, the high temperature limit is not limited by the Bloch-Griineisen
temperature (4.103), but by the Debye temperature, or provided the integrands in
Eq. (4.115) decay sufficiently fast, a fraction of the Debye temperature.

We are mainly interested in the case when graphene is supported by a substrate.
As previously discussed in Chapter 3, coupling of the flexural mode of a crystalline
membrane to the substrate acoustic phonons will gap the dispersion relation of the
flexural mode. This flexural-gapped (FR) mode will lie within the continuum of bulk
phonon states of the substrate and will therefore acquire a finite lifetime. At the same
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time the flexural mode will also hybridize with the substrate surface Rayleigh mode,
acquiring a linear dispersion relation at long wavelengths. Since the energy of this
mode lies bellow the continuum of bulk states, it will be a well defined mode with a
long lifetime. Therefore, the imaginary part of the flexural phonon Green’s function
will be split into

Qo
ImDZ (w) = —;ZFR(q)cs (w? — wipq) +IMDEq (), (4.123)

where wrpq and Zrgr(q) are the dispersion relation and the weight of the flexural-
Rayleigh mode, given respectively by Eq. (3.73) and (3.75), and ImDﬁaq(oJ) is the
remaining contribution which cannot be written as a d-function due to the substrate
induced broadening. The transport time due to flexural phonons involves two phonons
and therefore, when the graphene membrane is on top of a substrate, can be split
into contributions involving two flexural-Rayleigh modes (FR-FR), two flexural-gapped
modes (FG-FG) and one flexural-Rayleigh and one flexural-gapped mode (FR-FG). In
Fig. 4.5 we plot the resistivity of SiO2 supported graphene due to scattering by flexural
phonons, showing the different contributions to the transport time. We also show the
resistivity if we ignored the dynamics of the substrate, that is, if we assume that the
only effect of the substrate was to gap the dispersion relation of the flexural mode, but
without inducing any broadening or hybridization with the substrate Rayleigh mode.
In this case we would obtain

2
ImDI};q(w) SY) <w2 - (W%agpw) > ) (4.124)
3 p ’
with (see Eq. (3.67))
w%éjugped _ g |q‘4 + %’ (4.125)

where ¢ is the membrane-substrate coupling parameter introduced in (3.8) of Chapter 3
. We can see that the resistivity increases for smaller values of g. The reason for this
is that the gap and broadening induced by the substrate will be smaller and therefore
the flexural phonon energy will be lower. We can also see that for smaller values of
the membrane-substrate coupling the main contribution to the resistivity comes from
FR-FR processes. However, we must point out that for small values of g the flexural-
Rayleigh mode actually has a dispersion relation that is very close to quadratic except
at very small or large momentum, where it is almost linear. For this reason we also
see that for smaller values of g, neglecting the dynamics of a substrate and using
Egs. (4.124) and (4.125) becomes a much better approximation than for larger values
of g. We also point out that for typical values of the membrane-substrate coupling,
the resistivity at room temperature for a doping of e = 0.12 €V is of the order of
ppc ~ 1, much smaller that the resistivity due to scattering by in-plane phonons.
In Fig. 4.5, we also show the limiting high temperature behaviour of the resistivity,
which scales as T2. However, as we have previously anticipated, and differently from
the scattering by in-plane phonons, this regime is never reached for room temperature
values. This is more clearly shown in the logarithmic plot of Fig 4.6. There it is
clearly shown that the high temperature asymptotic limit is approach is very slowly
for scattering by flexural phonons in supported graphene and at room temperature
there are still significant deviations from the high temperature result. This is to be
contrasted with the resistivity due to flexural phonons in suspended strained graphene
sample, assuming a typical value of strain of @ = 0.01% [35] in Eq. (4.120), and with
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Figure 4.6: Log-log plot of graphene resistivity as a function of temperature due to different
scattering processes: scattering by in-plane phonons; scattering by flexural phonons
in a suspended strained sample with @ = 0.01%; scattering by flexural phonons for a
graphene sample supported by a SiO; substrate tacking into account the dynamics
of the substrate; and assuming the substrate is static. The dashed lines represent
the asymptotic high temperature behaviour: ~ T for scattering by in-plane phonons
and ~ T2 for scattering by flexural phonons.

the resistivity due to scattering by in-plane phonons, which are also shown in Fig 4.6.
For the case of scattering by in-plane phonons and for scattering by flexural phonons
in suspended strained graphene the asymptotic high temperature limits are reached
already at room temperature.

Finally we point out that while in suspended samples, scattering by flexural phonons
is the dominant mechanism limiting the conductivity of graphene at room temperature
[35-37, 133, scattering by flexural phonons is substantially reduced in supported sam-
ples and scattering by in-plane phonons becomes the dominant mechanism, as Fig 4.6.
demonstrates. This should happen for any substrate and not just SiOs substrate as
seen in Fig. 4.7, where we show the resistivity of graphene due to flexural phonons for
graphene supported by a hBN substrate.

4.5 CONCLUSION

In this chapter we have studied the limits imposed by flexural phonon scattering to the
resistivity of graphene samples supported by a substrate. We found out that scattering
by flexural phonons gives origin to a resistivity that scales with temperature as 72 in
the high temperature limit. This is true both in the case of suspended samples and in
supported samples and is due to the fact that scattering by flexural phonons is a two
phonon process. However, while for a doping of n = 10'? cm™2, scattering in suspended
samples with small strains yields a T2 behaviour for temperatures as low as 50 K, for
supported samples the T2 behaviour is approached at a much slower pace, and even at
room temperature there are significant deviations from the 72 behaviour. This is also
in contrast with the case of scattering by in-plane phonons and its associated scaling
of the resistivity with 7', which is also reached for temperatures 2 50 K. The difference
can be explained by the fact that in the quasi-elastic approximation, the maximum
momentum transferred by the phonons to the electrons is given by 2kp, which for
n = 10'? cm™2, corresponds to a temperature of 38-56 K, such that for > 50 K all
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Figure 4.7: Graphene resistivity as a function of temperature due to scattering by flexural
phonons when graphene is supported by a hBN substrate. The Full line represents
the resistivity due to scattering by flexural phonons when these are coupled to
the substrate. This contribution is split into processes involving two FR phonons
(FR-FR), one FR and one FG phonon (FR-FG) and two FG phonons (FG-FG).
The used vale for the graphene membrane-substrate coupling is gypny = 1.82 X
1020 N m™® (see Table 3.1). We considered electron doped graphene with n =
10*2 em~2 (corresponding to ez = 0.12 eV) and used electron-phonon couplings
given by g1 = 25 eV and go = 5.8 €V.

the relevant phonons will be classical and we obtain the T behaviour. The case of
scattering by flexural phonons is distinct since the maximum transferred momentum
of 2kr is distributed by two phonon. Therefore, in the case when the momentum of
the two flexural phonons is anti-parallel the maximum momentum is limited, not by
the Fermi momentum, but instead by the Debye momentum, which corresponds to
a temperature of ~ 1000 K in graphene. Therefore, at room temperature quantum
statistics still plays a significant role for flexural phonons and we obtain a deviation
from the classical T2 behaviour in supported samples. Naturally, this same discussion
would apply to scattering by flexural phonons in suspended samples. However, in
suspended samples with small strain, scattering will be dominated by phonons with
q — 0, which will always be classical, which explains the fast approach to the T2 limit.
In supported samples, in the q — 0 limit, the flexural phonon is heavily damped by the
substrate and the hybridization with the substrate Rayleigh mode is weak and their
contribution for resistivity is therefore weak.

While in suspended samples, scattering by flexural phonons can be the dominant
source of scattering for small strains, we found out that scattering by flexural phonons
in supported samples is drastically suppressed for typical graphene-substrate coupling
strengths for the widely used substrates SiOo and hBN. This situation is expected to
be true in general. While a reduction of the graphene-substrate coupling does lead to
an increase of the resistivity due to the smaller gap that is induced in the dispersion
relation of the flexural phonons, this increase is modest. For a electronic density of
n = 10'2 cm™? at room temperature, a reduction of the typical graphene-substrate
coupling by one order of magnitude leads to a more than doubling of the resistivity.
However, the actual change is from ppc ~ 1 €2 to ppc ~ 2 €2, a resistivity that is
much smaller that the one due to scattering by in-plane phonons, which is of the order
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of ppc ~ 30 Q at room temperature. Even inclusion of the hybrid flexural-Rayleigh
phonons which have a linear dispersion relation and long lifetimes at small momenta
does not change this result. This is mainly due to the fact that the weight of the
flexural-Rayleigh phonon in graphene also vanishes at small momenta.

Therefore, we conclude that in supported graphene samples, scattering by flexural

phonons will always be a weak contribution to the resistivity and can safely be ignored.

This justifies early theoretical studies of acoustic phonon-limited resistivity in supported
graphene samples, where scattering by flexural phonons was neglected.
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COULOMB DRAG IN DOUBLE LAYER STRUCTURES

5.1 INTRODUCTION

When two 2D metallic systems are electrically isolated from each other, but close enough
such that they can still interact, this remote interaction enables momentum relaxation
and exchange between the two systems. In a situation where there is a net drift velocity
of the electronic fluid in one of the metallic systems, the interaction between the two
will tend to equilibrate the drift velocities of both systems. The possibility of this kind
of remote frictional drag was first theoretically discussed in Refs. [156, 157] and was
first observed between two-dimensional electron gases (2DEG) in semiconductor based
double quantum well structures [42—-46|. The remote interaction enabling frictional drag
was attributed to electron-electron Coulomb interaction and thus this phenomena is
now commonly referred to as Coulomb drag [158-162]. Coulomb drag is an interesting
phenomena, which, contrasting with most other transport phenomena, it is not just
corrected by interaction effects, but is actually driven by them.

We will consider the effect of Coulomb drag between two parallel 2D metallic layers.
Coulomb drag is generally characterized by the drag resistivity. In an experimental
situation where a current, o, is driven through one of the layers, generally referred to
as the active layer and which we will denote by layer 2, the exchange of momentum
between the two layers will tend to induce a current in the other layer, referred to as
the passive layer and which we will denote by layer 1. In an experimental setup, see
Fig. 5.1, in which no current is allowed to flow in the passive layer, an electric potential
imbalance, V7 will build up along the passive layer. The drag resistivity is defined as

wWvi  E;
LI, J’
where Ey = V1 /L is the electric field built in the passive layer, with L its length, and
Jo = Iy /W is the electric current density driven through the active layer, with W its
width.

The advent of graphene and the possibility of creating graphene double layer struc-
tures in which the graphene layers are separated by an insulating material [38, 39] gave
origin to a renewed interest on the topic of Coulomb drag both from the experimental
[39-41] and theoretical [163-173] point of views. Compared to the case of Coulomb drag
between 2DEG’s, Coulomb drag in graphene differs from the former in three ways: (i)
the low energy dispersion relation for graphene electrons is linear, instead of parabolic;
(ii) the wavefunction of electrons in graphene has a spinorial character instead of being
a simple scalar; and finally (iii) the impurity dominated transport time in graphene is
not a constant, but is instead proportional to the momentum (or energy) 7" o [k|[174].
In the early literature in Coulomb drag in double quantum well systems, it was es-
tablished that in the limit of low temperature, high density, large layer separation, d,
and strong screening the drag resistivity depends on temperature as 72 and on the
interlayer separation as d=4 [158] (a result previously given in [44] without derivation).
However, the situation in graphene is not so clear. While there was an early agree-
ment that in the low temperature/high density limit the drag resistivity in graphene
should still depend on temperature as T2 [164-169], there was no agreement on the

PDrag = (51)
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dependence of drag on the layer separation and how the dependence of the transport
time in momentum should affect the result. As a matter of fact several contradicting
statements could be found in the literature which we summarize in the following.

1. Tse et al [164] assumed a constant transport time, obtaining a d=* dependence
for the drag resistivity.

2. Peres et al [165] considered a momentum dependent transport time, 7 o |k,
obtaining a d~% dependence.

3. Katsnelson [166] considered a constant transport time and obtains a d~* depen-
dence.

4. Hwuang et al [167] considered both case of a constant transport time and the
case of transport time proportional to the momentum, 7" o |k|. For a constant
transport time a d~¢ dependence was obtained (in contradiction with the result
from [164]). For the case of a momentum dependent transport time a d~* be-
haviour was obtained. The case of drag between two bilayer graphene layers was
also studied. Using a constant transport time a d~* behaviour was obtained in
this same limit.

5. Narozhny et al [168] considered both cases of a constant and a linearly momentum
dependent transport time. For the case of a constant transport time it was
obtained a d~* dependence. It was argued that in the low temperature, high
density limit, this result still holds, regardless of the momentum dependence of
the transport time.

6. Carrega et al [169] studied the drag between massless Dirac electrons. They
proved that in the low temperature/high density limit, the dependence on mo-
mentum of the transport time is irrelevant and a d~% dependence is obtained for
large interlayer separations.

Therefore, a general theory of Coulomb drag, capable of describing on equal footing sys-
tem with different dispersion relations and different momentum dependences of trans-
port time on momentum, is necessary to clarify this issue. The discussion of such
general theory and its predictions is one of the goals of this chapter.

Another interesting question is the role played by other possible remote interlayer
interactions in the phenomena of Coulomb drag. One such possibility is the effect of
phonon mediated electron-electron interlayer interaction. The effect of electron-phonon
interaction in double quantum wells and in the Coulomb drag between 2DEG’s was
previous considered in Refs. [175-179]. In graphene it is know that substrate phonons
play an important role in limiting the electrical conductivity of supported graphene
samples [121, 130, 131]. This is specially important in the case of polar substrates,
such as hexagonal boron nitride, where longitudinal optical phonons give origin to
long ranged electric fields which give origin to remote scattering of graphene electrons.
Therefore, it is also expected that this kind of remote scattering by optical phonons
will play a role in the phenomenon of Coulomb drag.

In this chapter we study Coulomb drag between two parallel generic 2D electron
systems, paying special attention to the case of drag between two graphene layers. In
Section 5.2, we describe a general theory for Coulomb drag between two parallel 2D
metallic layers to lowest order in the effective interlayer interaction. Using this general
theory, we study Coulomb drag between systems with arbitrary electronic dispersion
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Figure 5.1: Schematic representation of a typical setup for the observation of Coulomb drag
between two metallic layers (in this case two graphene layers). A current I is
driven through the active layer, £ = 2, which due to remote interlayer interaction
induces a electrostatic potential imbalance, V7, in the passive layer, £ = 1. The two
layers are separated by a distance d of a material with dielectric constant e5. The
two layers are encapsulated by dielectrics €; and e3, respectively bellow and above
the double layer.

relation, wavefunction structure and with an arbitrary dependence of transport time
on momentum. We determine the scaling of the drag resistivity with the temperature,
distance and electronic density in the limit of small temperature, large separation and
strong screening. In Section 5.3, we specialize to the case of drag between two graphene
layers at high doping but generic layer separation and taking into account the linear
momentum dependence of the transport time in graphene. In Section. 5.4, we discuss
how the effective electron-electron interaction mediated by longitudinal optical phonons
of a polar medium embedding the two metallic layers can be taken into account in the
evaluation of the drag resistivity. Numerical results for the drag resistivity between
two graphene layers encapsulated by hBN, both neglecting and including effects of

hBN optical phonons, are presented and discussed in Section 5.5. Conclusions from

~

this chapter are made in Section 5.6

5.2 COULOMB DRAG IN A GENERAL BILAYER SYSTEM

Suppose we have two parallel metallic layers, £ = 1 and ¢ = 2, separated by a distance d
such that the two layers are electrically isolated from one another, meaning that electron
tunnelling from one layer to the other can be neglected. Without loss of generality, we
assume that the active layer, £ = 2, is placed at z = d and that the passive layer, { =1,
is placed at z = 0. Assuming the two layers are somehow coupled, applying electric
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fields, which we write as Ey, to any of them will give origin to currents in both layers,
which we write as J,. In linear response theory, the currents in both layers are related

to the electric fields as
Ji | _ | ou o
Jo o921 022

where in the previous expression o1 and g9y are intralayer conductivities while o2
and o9 are the interlayer conductivities also referred to as transconductivities or Drag
conductivity. Notice that for a generic systems, o are tensors. The inverse of this
relation can be written in terms of the resistivity tensor

_ | P op12| | J ’ (5.3)
P21 P22 Jo

which is related to the conductivity tensor by

-1
P11 P12 | _ | 011 012 (5.4)
P21 P22 021 022
As described in the introduction of this chapter, Section 5.1, a typical Coulomb drag
experiment consists in driving a constant current Jo in the active layer and measuring
the electric field E; in the passive layer, while not allowing any flow of current in that
layer, J; = 0. In that situation, from Eq. (5.3) we obtain E; = pj3 - J2 and from the
very definition of drag resistivity Eq. (5.1) we obtain pprag = p12. The drag resistivity
can then be expressed in terms of the intra- and interlayer conductivities by using
Eq. (5.4), and we obtain

E;

iy (5.2)

E;
E-

_ -1
PDrag = — (022 015 011 — 021) . (5.5)

We will focus on systems which for low energies are isotropic, such as graphene. In that
situation, all quantities in the previous equation can be regarded as scalars instead
of tensors. Furthermore, it is reasonable to expected that the interlayer conductivity
will be much smaller than the intralayer ones. Therefore we can approximate the drag

resistivity by
012

PDrag = — (5.6)

011022
Therefore, computing the drag resistivity is reduced to a problem of computing conduc-
tivities. Provided the interaction between the two layers is weak, the transconductivity
can be computed using perturbation theory. Throughout the years, different techniques
have been used to compute the transconductivity, including Boltzmann’s kinetic equa-
tion [158, 160], the memory function formalism [159] and the Kubo formula [161, 162].
In Appendix G we present a derivation of the transconductivity based on the Boltz-
mann equation. To second order in the interlayer interaction the transconductivity is
given by

+o00
Z] _ €1€2 / ‘UR( 2 j
012 = E — Y12 w,Q)‘ At(w,9)As(w, q), (5.7)
27['h]€BTA 4smh2 ( wT)



5.2 COULOMB DRAG IN A GENERAL BILAYER SYSTEM

where ey is the charge of carriers in layer ¢, Ujs (w,q) is the screened interlayer inter-
action and the quantity Ay(w,q) is the non-linear susceptibility of layer ¢ [161, 162]
which, in the Boltzmann limit, is given by

tr tr
Ag(w, QZ A Z ’ Ek-}-qk’ Tk+q\ e Vk+q N 0 — Tk,/\,EVk,A,f) X
| WY

X (f(extqr.e) — fexne)) 8 (w+ exrqre —exne), (5.8)

where gy is the degeneracy of the band (which includes both spin and valley degener-
acy if appropriate). In the expression for Ay(w,q), pzlli\kq,k = (k+q, XN |k, ), is a
wavefunction overlap factor of electrons in the same layer, 7", , is the transport time
of an electron in layer £ with momentum k and in band )\,7 which has energy €k )¢
and velocity vi ¢ = h_lvkek A¢- We notice that for an isotropic system we will have
Ay(w,q) = |Ay(w,q)|q/|ql, leading to 075 = ofy, with 07§ = 0 (in the absence of
a magnetic field). In the Boltzmann limit at low temperatures and for an isotropic
system, the intralayer conductivities 11 and o9y are given by

2
(&
O'MZEZDOS(GFJ)U%’KTIE{E, (5.9)

where the indice r denotes that all quantities are evaluated at the Fermi level. Com-
bining Eqs. (5.6), (5.6), (5.7) and (5.9) we obtain the drag resistivity. But before we
proceed we must determine the form of the interlayer effective interaction.

5.2.1 Interlayer screened Coulomb interaction

In order to compute the drag resistivity, we must specify the form of the interlayer
Coulomb interaction that appears in Eq. (5.7). In general the two 2D metallic layers
will be embedded in a dielectric material which will screen the effective interaction
[166, 180|. Furthermore, the charge carriers in the metallic layer will provided additional
screening to the effective interaction [160, 161, 177, 181]. In order to describe Coulomb
drag both effects must be taken into account.

5.2.1.1 Bare Coulomb interaction in vacuum

Before obtaining the screened Coulomb interaction in the double layer structure, we
must fist determine the bare interaction. This can be obtained by solving the Poisson
equation for a test charge. The bare electric potential, ¢(r), generated by a test charge
located at the origin, pree = —ed (7), can be obtained by solving the Poisson equation
in vacuum

V2¢(F) = ia(m. (5.10)

Assuming translation invariance along the x — y plane it is convenient to write the
electric potential as

2
o(7) = / (jw‘)t«p(q, 2)ea, (5.11)

where we have written 7 = (x,z). Writing § (¥) = d (x) d(z) the Poisson equation for
the Fourier components ¢(q, z, zg) becomes

82 2 e
@d)(q?Z? ZO) - ‘q‘ ¢(q7 2, 20) = %5(2 - 20)7 (5'12)
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where we have written ¢(q, z, zg) to explicitly state that the potential will be a function
of the position of the test charge. For a test particle at the origin we simply have
29 = 0. For z # z, the general solution of the previous equation is given by ¢(q, z) =
Ayelalz=20) 1 A ¢~lal(z=20) We demand that the potential does not explode at infinity
and therefore set Ay = 0 for z > zp and A_ = 0 for z < 2z9. The J-function 0(z — zp)
imposes a discontinuity of the derivative of the potential at the position of the test
charge, which is given by
a¢(q7 z(—]i_> ZO) 8¢(q7 z[)_7 ZO) €

- ==, 1
0z 0z €0 (5-13)

Imposing this boundary condition and the continuity of the potential at z = 29 = 0,
we obtain the set of equations

AZ — AT = 0, (5.14)
e
—lalAZ —|qlAT = —, (5.15)
€0
from which we obtain AZ = A$ = —e/ (2¢o|q|), such that the Fourier component of
the potential is given by
e
o(q,z,20) = — e lallz=2ol 5.16
(@00 = 5o (5.10

From this equation, we can write the bare intra-, V11(q) = —e$(q,0,0) and Vaa(q) =
—e¢(q,d,d), and interlayer, Via(q) = —ep(q, 0, d) and Vo1(q) = —ed(q, d,0), Coulomb
interactions for two layers separated by a distance d as
2
Vi (q) = ———e1ald(i=0eer) g ¢/ =1 2. (5.17)
2¢0 |q

We now move on to the case when the two metallic layers are embedded in a piecewise
homogeneous dielectric medium.

5.2.1.2  Bare Coulomb interaction in layered, unizial dielectric

In the case in which the two metallic layers are not in vacuum, but are instead embedded
in a layered dielectric medium, the bare Coulomb interaction can still be obtained by
solving the Poisson equation in a dielectric medium

V- (el - Vo) = L) (5.18)

€0

where preq(7) is the free charge density and €(7) is the dielectric tensor of the embedding
material. We consider a test charge located at 7, such that pgee(7) = —ed (77— 7).
We will restrict ourselves to the situation of experimental interest, where €(7) is a
piecewise constant function that only changes along the z direction at the dielectric
interfaces, which are located at z = z;. We assume that the test charge lies at one of
these interfaces. We specialize to the case where the dielectric material is an uniaxial
material, such as hBN, with the symmetry axis along the z direction. In this case, the
dielectric tensor of the material can be written as

e, 0 O

e=1 0 e 0], (5.19)
0 0 €||
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where € and €, are the components of the dielectric tensor parallel and perpendicular
to the c-axis of the dielectric material. In this situation and introducing the Fourier
components of the electric potential as in Eq. (5.11), the Poisson equation (5.18) be-
comes

0 0 2 e
8z<6@%hﬂmzo—%¢@Hm qu%—aﬂz—m) (5.20)
In a region where € is constant, the solution to Eq. (5.20) is of the form of
“lalz -/ az
#(q,z,20) = AgeV I+ Ae VI (5.21)

Integrating Eq. (5.20) along the z direction around one of the dielectric interfaces at
z = z; we obtain the boundary condition for the derivative of the potential

0 _. 0 _ e
6”(2:_)&(?((17 Z?—, 20) - 6”(2@' )&qﬁ(q? Zi 7ZO> = %52’1‘,207 (522)
where 9§, ., = 1 if the test charge is at the interface z; and 4., ., = 0 otherwise.
Additionally, we have the continuity condition for the potential
(z)(qa Zi+7 ZO) - ¢(q7 21_7 20) =0. (523)

Using Eq. (5.21) together with the boundary conditions Egs. (5.22), (5.23) and the
condition that the potential should not explode at infinity, we can determine the bare
interaction in a layered material. For concreteness, we consider the case represented in
Fig. 5.1 with

diag [e1 3,€13,€13] ,2>d
e(z) =  diag |:€J_’2, €12, 6“72] ,d>2z2>0- (5'24)
dlag [el,la €11, 6H7]_:| ) 0>z

We consider a test charge located in the plane z = d. After solving the Poisson
equation for ¢(q, z,d), we obtain the bare Coulomb intralayer interaction as Vas(q) =
—ep(q,d,d) and the interlayer interaction as Via(q) = —e¢p(q,0,d). The intralayer
interaction in the active layer, V11(q), can be obtained by considering a test charge
located at z = 0 as V11(q) = —e¢(q,0,0). The final result can be written in a compact
form as

1 2 - 2722 lald(1—8, o)
A VA
eee(lal) 2¢o |q

where €(q) are effective momentum dependent dielectric constants, which can be
conveniently expressed in terms of reflection and transmission coefficients as

Ve (q) = : (5.25)

o [f12
1 B t12 1+ r3ze 2 (5 26)
- o [eL2 '
11(q) €||,2\/m 1~ rygrae 2 “l,2 dq
I ti2 1+ 732 (5.27)
- o [ei2 ] .
IQ(Q) 6”72% 1 — riprae 2 €2 dq
_og [L2
1 _ t3o 1+ 7r2e 2 (5 28)

p _ €1,2
22(q) €||,2 6¢,2/6H,2 1 — rorane 2 1,2 da
— T12732
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with the reflection an transmission coeflicients for the Poisson equation given by

=€ en/ELe/ee T e /e e /€
Top = R (5.29)

E”}e EL,E/GH,Z_‘_EH,K’ 61_7@/6”,4/

26”7@1 /GJ_,E’/EH,K’ (5 30)

toy = .
€\ €L/ €le F €/ eL e /€

It can be easily checked that €;2(q) = €21(q). The reflection and transmission coeffi-
cients defined above are the electrostatic equivalent of the Fresnel coefficients for the
electromagnetic problem. They appear as the solution for Poisson equation around an

interface between dielectric media characterized by €, and €y, if we look for a solution
€1 L

€1 L
VT A RV . .
of the form ¢(q,z) = Aye VI + A e VI in the regions ¢ and ¢, with
A_ =ty and A, y = ryp, while imposing the conditions A_ y =1 and AL, =0. In
the ¢ — 0 limit, all the effective dielectric functions become the same

_ €l,1y/€L1/ €1 T €3y /€L3/€) 3
lim Eppr (q) = (531)

q—0 2 ’

a result we will later use.

5.2.1.3 Screening by free carriers in metallic layers

The response of the free charge carriers in the metallic layers will screen the bare
interaction Eq. (5.25). The screening of the bare interaction by the charge carriers of the
double layer structure is described within the random phase approximation (RPA) by
the coupled Dyson equations which can be written in matrix form as [160, 161, 177, 181]

Uff (@, a) Uf%w,q)]: Vicl@) Varla) |,

U (w,q) UL (w,q) Vor (@) Va2 (a

Vi1 (q) VIQ(CI)] [x?(w,q) 0 U (w,q) Uf}(w,q) (5.32)
Vor (@) Vaz(q) 0 xFwa) || Ufwa) Ufwa) |

where U}, (w,q) is the retarded RPA screened interaction and x% (w,q) is the bare
retarded irreducible density-density correlation function of layer . Notice that there
are no interlayer irreducible density-density correlation function terms, since we are
assuming that interlayer tunnelling is negligible. The coupled RPA equations are rep-
resented diagrammatically in Fig. 5.2. Solving the coupled RPA equations we obtain
the interlayer screened interaction

~ Via(w,q)

Uk = 2 5.33
12(“’) q) Gdbl(w, q) ) ( )

where we have defined the dielectric function for the coupled double layer structure as

eanl(w,q) = (1 = Vir(a@)x{(w,q)) (1 — Vaz(a)xF(w,q)) —
— Via(a)Var(a)x1H(w, @) x5 (w,q).  (5.34)
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It is the screened interlayer interaction, Eq. (5.33) that enters Eq. (5.7) for the transcon-
ductivity.

We end this section by pointing our that tacking into account the dielectric environ-
ment and screening by the free carriers of the metallic plates could have been done in
just one step, if the response of the free carriers was introduced directly into the Poisson
equation. This could have been done in Eq. (5.18), if we wrote the free charge density
as the sum of the test charge density and a charge induced in the metallic layers,

Prree(W, A, 2) = prest(a, 2) + pind(w, q, 2), (5.35)

where piest(q, 2) = —ed (z — 2p) is the test charge density and pinq(w, q, z) is the charge
induced in the metallic layers, which is frequency dependent due to the dynamic re-
sponse of the free carriers. Within linear response, the induced charge density is related
to the total electric potential via the irreducible density-density correlation functions
of layer 1 and 2 as

Pind(w,q, 2) = —65(,2)sz (w,q) ¢(w,q,0) —ed(z — d))(é12 (w,q) ¢(w,q,d). (5.36)

By solving Eq. (5.20) with pinq(w, q, z) added to its right hand side, we automatically
perform the resummation that is done in the Dyson equation, Eq. (5.32). To see this
we first notice that the Poisson equation Eq. (5.18) with a test charge located at 7% and
an induced charge density of the form given by Eq. (5.36), becomes a self-consistent
equation for the effective interaction U (w,, 7)) = —e¢(w, 7, 7), which in real space
reads

€ N S - - -
- e—gv - (e(P) - VUR(w,r,ro)) =0 (F—70) + /d3rXR(w, 7P UR (w, 7, 7). (5.37)

Next we notice that the bare Coulomb interaction is nothing more than the inverse of
the Poisson differential operator, which we write as

V=0V e - V. (5.38)

With this definition, the self-consistent Poisson equation (5.37) can be written schemat-
ically in matrix matrix notation as

v L. UR=T1+x% U", (5.39)

where I is the identity operator (the Dirac j-function in real space). Applying the bare
Coulomb interaction as an operator on the left of the previous equation we obtain

Ult=v +v.x". U~ (5.40)

This equation has the exact same structure as Eq. (5.32). By performing a Fourier
transform in the in-plane coordinates and by noticing that the density-density cor-
relation function in the double layer structure only has support at z = 2/ = 0 and
z =z = d, we obtain exactly the same equation as in Eq. (5.32). As a matter of fact,
the Dyson equation for the screened interaction, Eq. (5.32), is nothing more than the
integral form of the self-consistent Poisson equation, Eq. (5.37).
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Figure 5.2: Diagrammatic representation of the Dyson coupled equations for the screening of
the Coulomb interaction by the charge carriers of a metallic double layer structure,
Eq. (5.32). The wavy double line represents the dressed Coulomb interaction, while
the wavy single line represents the bare interaction. The bubble represents the
irreducible density-density correlations function of each layer, x,» . Summation
over £ is implied.

5.2.2  Low temperature, large separation and high density universal behaviour

We are now interested in determining the low temperature, large separation and high
density form of the drag resistivity between two arbitrary metallic layers. We will keep
the electronic dispersion relation of each layer, ek )¢, the overlap factor pz\’;’g‘_q,k and
dependence of the transport time 7', , on momentum arbitrary. The only restrictions
we impose is that the system displagls, isotropy and that a single band, which we will
refer to as the conduction band and denote it by A = ¢, crosses the Fermi level in each
layer.

5.2.2.1 Low temperature limit

We will study the drag conductivity in the limit of low temperatures, that is kT <
€r,1/2, With €py the chemical potential of layer £. The central idea in the following
discussion is that close to the Fermi level we can linearise the electronic dispersion
relation in the conduction band as !

ke ~ €pg + wpy (k| — kryg), (5.41)

where vg is Fermi velocity, which is nothing but the slope of the band at the Fermi level
and in general will depend on the value of Fermi energy. Notice for graphene within
the Dirac model the electronic dispersion is linear, such that Eq. (5.41) is actually an
equality and the Fermi velocity is a constant.

Due to the factor 1/sinh? (w/ (2kgT)) that appears in Eq. (5.7) for the transcon-
ductivity, the main contribution to the integral over energy will be due to the region
with w S kpT. Since we are assuming that ep /5 > kpT, we can therefore expand
the remaing integrand in Eq. (5.7) to lowest order in w and then set 7" = 0. Therefore,
we will replace the dielectric function for the coupled double layer structure, Eq. (5.34)
by its static value €gp1(0,q). At the same time we expand the non-linear susceptibility,
Eq. (5.8), to lowest order in w. To do so we first notice that the d-function that appears
in Eq. (5.8), 0 (w + €ktq e — ek)\’g) , in the limit of vanishing w forces both band in-
dices to be the same, A = ). Furthermore, the d-function can be used to expand the
difference of Fermi functions that appears in Eq. (5.8) as

Of (exne)

o (5.42)

flecrane) — flexae) = flaae —w) — flexae) ~ —w

We are excluding cases where the Fermi level crosses a van Hove singularity, in which case for some k
point in the Fermi surface we will have Viex x ¢ = 0.
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After doing this and to lowest order in w, we we can set w = 0 in the d-function. The
derivative of the Fermi function will the strongly peaked at the Fermi level for low
temperatures and can be approximated by a d-function, such that in this limit only the
conduction band will contribute to the non-linear susceptibility. To lowest order in w
the non-linear susceptibility thus becomes

2T

c,c
Ay(w,q) :Wgﬁz . ‘Pg,k+q7k

2
’ 0 (€xco — €F) 0 (Ektquel — €kel) X

X (Tltciq,c,évk-‘rq,c,f — Tl?:qévk,t:,ﬁ) + O (w2) . (5.43)

Assuming isotropy we can write 7%, ,vi ¢ = kwy ([k|), where wy (|k|) is a generic
function that only depends on |k| and that by its very definition satisfies k| we (k|) =
7, s [Vkcel. Due to the two d-functions that appear in Eq. (5.43), we have that both
k and k + q are pinned to the Fermi level, k| = |k + q| = kr . We can therefore write

T qedVitael — TheViger = (kK + Q) w (k + q|) — kw (/k|)

o
= w (kpe)q = ——- (5.44)

kg

5

The non-linear susceptibility is thus given by

ZTFLL)TFE’UFZ
Ap(w,q) = gor—F—

‘ § (€xe0 — €7) 8 (Ercrquel — €iee) T O (W7)

(5.45)
Notice that in this limit, since both k and k + q are pinned to the Fermi energy, the
values of q are restricted by |q| < 2kg¢. The summation over k can be performed by
turning the sum into an integral and then performing the change of variables

k-q

u = COS9k7q = m,

(5.46)

after which the integration over k can be performed using the d-functions as

=

C,C
IOZ k+q,k

92 ) +1
:2/ dkk:/ .
are o —1 \/1—u
kre 1

)

212 (vpeh)? |dl 1 (e )2

2
’ 0 (€xce — €rp) O (€ktquel — €kel) =

|al
c,c ‘25(k_kF,€)6(u+2kF,£)
Prk+ak hvgye hvreq
‘2

c,C
Pek+q.k

(5.47)

\k|=kp,g,u=72]‘€%

The non-linear susceptibility to lowest order in w and in the low temperature limit is
thus given by

Wi q © (2kpy —a])

9ge
WUF,KHZ q lal \?
1= (o)

Af(wv q) =

2
‘ (5.48)

Pextqk

— —_ _lal
[k|=kF,eu=— Bepg

This is the central result to this section. It shows that in the limit of low temperature
and high density, the non-linear susceptibility is independent of both the energy disper-
sion relation of the electrons and their transport time dependence on momentum, de-
pending only on the particular form of the wavefunction overlap factors py | qk- 1t has
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been also pointed out in Refs. [168, 169] that the non-linear susceptibility in graphene
is independent of transport time dependence on momentum, but Eq. (5.48) is more
general and can be readily applied to the case of a 2DEG, graphene, bilayer graphene,
and other 2D systems, being an universal result that only requires an isotropic Fermi
surface with only one band crossing it. This universal result also contradicts Ref. [167],
where different results for the non-linear susceptibility of graphene, in the low w limit,
where obtained for different dependencies of the transport time on momentum.

Since the low temperature limit selects the low frequency dependence of the non-
linear susceptibility, which we found to be Ay(w,q) o w. In this limit, the dependence
on momentum and frequency of Ay(w,q) factors, allowing to perform the integration
over frequency in Eq. (5.7), which yields

.. 1 2 2
1 / e =TT (ke (5.49)
kBT J ginh? (%";T) 3

and we obtain that in the low temperature limit the drag conductivity and resistivity
depend on temperature as T2. Once again we emphasize that this result is indepen-
dent on the details of the system as energy dispersion relation, transport times and
wavefunction structure. We notice however, that this 72 behaviour might be modified
if higher order corrections to the drag in the interlayer interaction are considered [182].

5.2.2.2  Large separation and strong screening limits

We will now further assume that the interlayer separation d is large compared with the
Fermi momentum in both layers, that is kg od > 1. From Egs. (5.25) and (5.33), we
see that the interlayer interaction is suppressed for large values of transferred momen-
tum as Ut (w,q) ~ e~ldld such that the main contribution for the drag conductivity
will come from values of q such that |q| < d~!. Therefore, the condition d~! < k F1/2
allows us to expand the remaining integrand in Eq. (5.7) to lowest order in q. To
lowest order in q the wavefunction overlap factor pi( tak is 1. Therefore, in the limit
of large layer separation and low temperature, using Eq. (5.48) we can approximate the
non-linear susceptibility as

tr
WTFE q
A ~ L a4 5.50
E(wa q) ge 7T’UF7gh2 |q| ) ( )

an universal result that is independent of all the details of the system. Notice that
although is is clear that in the low temperature limit Ay(w, q) should only depend on
quantities defined at the Fermi level, such as the Fermi energy, momentum and velocity,
it is not obvious at first that changing the momentum dependence of €  » or Tf(f/\j will
not change the dependence of Ay(w,q) on q in this limit. In the limit of |q| < kg1 /9
the density-density correlation function is approximated by x2* (0,q) ~ —DoS; (ef),
where DoSy (¢) is the density of states of layer ¢. Therefore we can write the dielectric
function of the double layer structure Eq. (5.34) as

k k krrik
can(0,q) =1+ TF1 + RTF2 oy FTRARTE?2 (1 B e,g‘qw), (5.51)

lal lq/?

where
2

e
krpe = %Dosz (€re) (5.52)
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is the Thomas-Fermi screening momentum for layer ¢, and used Eq. (5.31) to write the
bare interaction in the small q limit as

v ( ) 62 ‘q|d(1—5472/) (5 53)
“ 2éco Jal ’ '

with € = (€1 + €3) /2 is the low momentum effective dielectric constant for the layered

structure. In Eq. (5.53), we have ignored effects of the anisotropy of the dielectric
medium, the case of an uniaxial material can be taken into account by replacing € by

Eq. (5.31) an replacing d — dy /€1 2/€| 2

Assuming that the screening length is small compared to the interlayer distance,
krp1/2d > 1, the condition |q| < d~! implies that |q| < krp1/2 and therefore we can
further approximate Eq. (5.51) as

krrik
eani(0,q) ~ w (1 - 6_2‘Q|d> . (5.54)

If the dispersion relation is given by a power law, ex ¢ = C¢|k|” we have in 2D that
krre o< k?,}”". Therefore, for a linear dispersion relation, as for graphene, the condition
krped > 1 is equivalent to kred > 1, while for a parabolic dispersion relation kg,
is independent of the Fermi momentum and the condition krped > 1 is actually an
extra assumption.

If we now use Egs. (5.50) and (5.54) in Eq. (5.7), the integration over momentum
and frequency can be easy performed and we obtain the following expression for the
(scalar) drag conductivity

o1y = G2 C(3)g1g2 €2 e2 T, (keT)? (5.55)
h 16 47T60€1}F71ﬁ 47T€0E'UF’2FL h2 (kTF,ld) (kTF,Qd)2

This result is valid for €g1/2/ (kT), kpj/2d, krpi/2d > 1 and is universal in the
sense that it does not depend on the particular forms of the energy dispersion relations,
transport time dependence on momentum or wave function structure, only assuming
isotropy and that a single band crosses the Fermi level in each layer. We obtain the
familiar 2DEG result of a 72 and d=* behaviour for the drag conductivity, proving
that it is indeed a much more general result. If the metallic layers are immersed
in a uniaxial material Eq. (5.55) still holds provided we make the replacements € —

(eH W/ eLi/en + e /€Ls/e, 3> /2 and d — dy /el 2/€| 2.

If we now use the Boltzmann result for the intralayer conductivity Eq. (5.9) while
noticing that the in 2D the density of states for an isotropic system can be written in
general as

ge krye
DoS == 5.56
oS¢ (ere) = o oreh (5.56)
and that the carrier density, ny, is related to the Fermi momentum in 2D as
4
ke =2, (5.57)
ge

we can write the drag resistivity in terms of the carrier density as

R ho ¢(3) <4mo> (m;e()) (kgT)? ‘ (5.58)

er1es 267, /g192 e? €5 n?/2n§/2d4
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This result, in the context of drag in 2DEG’s, is generally referred to as the Fermi
liquid result. Notice that while the drag conductivity depends explicitly on T}{l /20 this
dependence disappears when we consider the drag resistivity. It is also usual to express
the drag resistivity in terms of the Fermi and Thomas-Fermi screening momenta. To
do this we assume a power law dispersion relation, ex ., = Cy |k|", and obtain

ho ((3)n% (kT)? 1
e1ex 11911292 €pi€r2 (kpad) (kpad) (krpid) (krpad)

PDrag = — (559)

For drag between two 2DEG, vy, = 2, g1/3 = 2 (spin degeneracy), and we reobtain
the known formula from Ref. [158]. For graphene, we obtain exactly the same result,
since vy = 1 but g;/5 = 4 (spin and valley degeneracy). Finally, for the case where
each of the two layers are formed by graphene bilayers, v;/y = 2, g;/2 = 4 (spin and
valley degeneracy), we have an extra factor of 1/4 when compared with the result for
drag between two 2DEG’s or two graphene layers.

A comment regarding the region of validity of Eq. (5.58) is in order. We derived it
making the assumptions of: (i) low temperature, €z, 2 > kpT; (ii) large separation,
kp1/2d > 1; and (iii) strong screening kpp/od > 1. As a matter of fact there is a
fourth condition that was not made explicit before, and requires that kT < vp /th_l.
This was originally pointed out in Refs. [44, 45] and recently emphasized in Ref. [183].
This additional condition comes from the fact that in the small frequency limit the
energy é-function, ¢ (w + €xtq N — €k7)\’g), in Eq. (5.8) for the non-linear susceptibility
can actually only be satisfied when w < vg¢h|q|, such that the complete expression for
the non-linear susceptibility to lowest order in w is given by

N Wi, q O (2kpe — |d]) © (vpeh|a] — w) o 2
’ - 2 1~ £,k+q,k
mor il - ()’ E—
(5.60)

such that the integrations in frequency and momentum (5.7) are not completely decou-
pled. Since the frequency integral is cutoff at kpT" and the integration in momentum
is cutoff by d~!, provided we have kgT < vphd ™!, the conditional w < vpsh|q| does
not provide any additional constrain and the integrals effectively decouple, leading to
the T2 (and d~*behaviour assuming strong screening) behaviour. If kT > vphd ™!
the integral in frequency and momentum to not decouple leading to deviations from
the universal result Eq. (5.58). Therefore, Eq. (5.58) will actually be violated at large
enough separations and is only valid provided that kg, krp1/2 < d < vph/ (kpT)
and €F,1/2 > ]CBT

5.3 COULOMB DRAG IN GRAPHENE

While the discussion in the previous section was generic, we will now specialize to the
case of Coulomb drag between two graphene layers. We have argued that in the low
temperature limit, €5/ > kpT, the drag resistivity was insensitive to the dependence
of the transport time on momentum, but in general such dependence will be important.
Experimentally it is known that the transport time in graphene should depend linearly
on momentum or energy [174]. Therefore, we write the transport time in graphene
Tﬁfu = 7o |k|, where 7 is a constant with units of lengthxtime. This linear depen-
dence of the transport time on momentum can be explained in cases when the dominant
source of scattering are short-range resonant scatters or charged Coulomb impurities
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[174]. Under the assumption of a transport time that depends linearly on momentum,
the non-linear susceptibility for graphene can be written as

8 - ’ 2
Ay(w,q) = [ TovF Z ‘pzlgiq’k‘ (N (k+q) — Ak) x
KN

X (flexraqn,e) — f(exae)) 0 (w+ expqn,e — ekae) s (5.61)

where the band indices for graphene run over \,\ = &1, vp is the constant Fermi
velocity of graphene and the wavefunction overlap factor is given by, see Eq. (4.39),

Y 2 1
A
o) k+q,k) = 5 (14 WX cosficrque) (5.62)

We will assume that both graphene layers are highly doped with electrons, such that
both interband contributions and valence intraband contributions can be neglected
allowing us to consider only the case with A = X = +1. With this approximation, the
non-linear susceptibility for graphene becomes

Ay(w,q) ~ 7TOEUFZ‘IOZk+qk’ X

X (f(xrq.e) = flex+.0)) 0 (W + exrqre — xr0) - (5.63)

Comparing this expression with the density-density correlation function of graphene,
which is given by, see Appendix E,

flexran,e) = flexae)
w, ) 5.64
Xi' (w,q) Ak)\ZX‘ “‘quv ‘ W+ 0T + expq e — €k (564

we conclude that the conduction band of the non-linear susceptibility is proportional
to the imaginary part of the conduction band contribution to the density-density cor-
relation function. Namely, Eq. (5.63) can be written as

Ay(w,q) = =27 wrqlmy ¥ |, (w,q), (5.65)

where Xf’Jﬁe (w,q) is the A = X = +1 contribution to Eq. (5.64). For high doping, we
can approximate the density-density correlation function by its zero temperature value.
This can be evaluated analytically [151] and one obtains, see Appendix E,

2
q
I ® | (e q) = 9T 5w, (5.66)
4my/(vrhlal)” -
with @y (w, q) defined as
2epetw 2ep,e—w w lal o lal
O (w,q) = F( vphlq] ) F( vrhlq] ) ’ EF < min (kF,z’Q kF,é) (5.67)
’ wH2ep ¢ lal W lal 7 .
F( vrhlq] ) V| kEye 2‘ < GLIU«* < kp.e

where the F'(x) function is given by F(z) = xv/x2 — 1 — arccosh(z). The drag conduc-
tivity for graphene is thus given by

€770,170,2 ©1(W7Q)¢2(M7Q)
012 = 277.[.4h4kBT/ qq / Slnh2 w ) L <L)2 . (568)

vphg
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’ ‘ €oo ‘ wro [meV| ‘ f ‘ v [meV]| ‘
€L | 4.95 170 1.868 3.61
g |410] 974 [o0532] 0995

Table 5.1: Parameters for the dielectric function of hBN that enter Eq. (5.79). Taken from

Ref. [184].
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Figure 5.3: Plot of the real and imaginary parts of components of the dielectric tensor of hBN.

Using the Eq. (5.9) to graphene’s intralayer conductivity at low temperature as

2 ~
€2 €Fe70,0
0w = —
h vph?’

(5.69)

where we we have written the transport time in terms of the Fermi energy as 75, =
Toekre = Torere/ (vph), using Egs. (G.2) and (5.25) for the interlayer interaction and
performing a change of variables x = q/l;:F and y = w/ép, with l;:F = kr1krpand
€r = \/€r1€r2 the drag resistivity for graphene can be written as

1 h \/€F1€F2 o [ 3 [
pDrag:—?)ngiTag ; dx:v/o dyG (x,y,kr1, kra2,d), (5.70)

where we have introduced the function G (z,y, kp1,kr2,d) as

1
G(z,y,kp1,kpa,d) = ————— X

sinh? (y 25§T )

—2 €12 dl;tpaf,‘

y e “I-2 @1(37];?F7y)q)2(1’]%F7?/€F)
~ ~ 2 2 :
6%2 (l’kjp) ‘Edbl (yép,xkjp)‘ 1 - (%)

and ay = €2/ (4meguph) is graphene’s fine structure constant. Notice that the dielectric
function egp) (w, ¢) involves the density-density correlations functions for the graphene
layers. The zero temperature analytical formulas for graphene’s density-density corre-
lation function [151] are provided in Appendix E.

(5.71)

5.4 SUBSTRATE OPTICAL PHONON MEDIATED DRAG

We now discuss how the interaction between electrons in the metallic layers and optical
phonons of the substrate contributes to the drag resistivity. In polar materials, optical
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longitudinal phonons give origin to long range electric potentials that can interact
with the electrons in the metallic layers. In its turn, this electron-phonon interaction
gives origin to an effective electron-electron interaction that will also contribute to the
phenomenon of interlayer drag.

Interaction between electrons and longitudinal optical phonons is generally described
in terms of the Frolich Hamiltonian, which in 3D materials reads [185]

1
Hepo = i ; Mgp_gi (aq*— aT_,;) ; (5.72)

where p_g = > r ¢£¢57§ is the electron density operator and Mg is the longitudinal
optical phonon - electron interaction which reads

2w 1 1
Mg= | —=2 ( - > (5.73)
2¢€0 |(ﬂ €0 6(0)
where wr,o is the frequency of the longitudinal optical phonon, €(0) is the static dielectric
constant of the medium and e, is the high frequency limit of the dielectric constant of
the material. The optical phonons are assumed to be dispersionless such that wy,o is a

constant. The electron-phonon interaction described by the Hamiltonian (5.72) gives
origin to an phonon mediated retarded electron-electron interaction, which is given by

W;ﬁ(waq_) = M—!TDII?O (w¢®M(Tv (574)
where Df’o (w, q) is the retard optical phonon Green’s function which is given by

Dl (o) =i [ ate 00 ([ (agtt) = ol (0)) i (aa(0) ~ ) ])

2wLo
= 5.75
w? — wi oy + isgn (w) 0+ (5.75)

where we have used the fact that the phonon operators evolve in time as ag(t) =
e*"wLotaq(O).
Besides the phonon mediated interaction, we also have the Coulomb interaction

62

Ve(q) = ———=s, (5.76)
€0€co |q]

where the high frequency dielectric constant, e, takes into account screening by high
energy degrees of freedom, such as core electrons. Adding the Coulomb interaction to
the phonon mediated interaction, we obtain the effective electron-electron interaction

VEiw, @) = Vo(@) + M _gDf (w, @) My
2
S — (5.77)
coe(w) |q]
which the dielectric constant given by the Lorentz model
w2
e(w) = €00 + f— TO (5.78)

who — w? — isgn(w)0t’

where wro is the frequency of the transverse optical phonon and f is the so called
oscillator strength and is is given by f = ey (wﬁo — ngo) /w%o. The frequency of
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Figure 5.4: Diagrammatic equation of the Dyson equation relating the reducible with the irre-
ducible density-density correlation function, Eq. (5.80). The shaded bubble repre-
sent the reducible density-density correlation function, Xy, while the open bubbles
represent the the irreducible correlation function, y,, which is diagonal in the layer
indices. The wavy double line represents the bare Coulomb interaction. Summation
over £ is implied.

the longitudinal and transverse optical phonons are related via the Lyddane-Sachs-
Teller relation w?q/wo = €(0)/ex [186]. The fact that we obtained for the effective
electron-electron interaction, when taking into account phonon mediated interaction,
the Coulomb interaction with a dielectric constant given by the Eq. (5.78) should come
as no surprise. In the original derivation of the Frohlich Hamiltonian (5.72) [185]
the phenomenological dielectric function of a polar material enters as one of its main
ingredients. From the above discussion, we see that in order to take into account the
substrate longitudinal phonon mediated interaction into the drag resistivity, we just
need to replace the dielectric constant in the Poisson equation (5.18) by the frequency
dependent dielectric function, of the form of Eq. (5.78), of the the substrate material.
From the above discussion, we see that in order to taken into account the substrate
longitudinal phonon mediated interaction into the drag resistivity, we just need to
consider a Coulomb interaction with a frequency dependent dielectric function, which
is obtained by replacing the dielectric constant in the Poisson equation (5.18) by a
frequency dependent dielectric function, €(7) — €(w,7), of the form of Eq. (5.78). For
an unixial material, such as hBN, the dielectric tensor will become frequency dependent
with the in-plane, € (w), and the out-of-plane, €| (w), dielectric constants given by

i (w%’c‘)‘f
er (@) = el + fr
(W)™ —w? —iwyy,

: (5.79)

where in the above equation we allowed for a finite broadening of the optical phonon,
due to its finite lifetime. Experimental values taken from Ref. [184] for the parameters
in Eq. (5.79) are presented in Table 5.1. The real and imaginary parts of €, |(w) for
hBN are represented in Fig. 5.3.

The inclusion of the effect of substrate phonons will give origin to the appearance
of peaks in the screened interlayer interaction Ul% (w,q) around the frequencies of the
longitudinal phonons. As a matter of fact the peaks will not occur exact at the optical
phonon frequencies due to the fact that the optical phonons will hybridize with the
charge oscillations, plasmons, of the coupled metallic layers. This phonon-plasmon hy-
bridization is most clearly demonstrated if we study the full, reducible, density-density
correlation function of the double layer structure taking into account optical phonons.
The full reducible density-density correlation function, which we represent (with a capi-
tal x) as X fg, (w,q), is related to the irreducibility density-density correlation function,
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X?(w, q), by taking into account screening effects. They are related to each other via
the Dyson equation

X (w, q) 0
0 X3 (w, q)

Vi (a) V12(01)] [Xﬁ<w,q> X{%w,q)]_ (5.50)
Va1 (a) Va2(a) | [ X3f (w,q) X5 (w,q)

This equation is represented diagrammatically in Fig. 5.4. Notice that while the irre-
ducible density-density correlation function had no interlayer terms, the inclusion of
screening effects gives origin to the interlayer terms X{% (w,q) and X{ (w,q) due to
the interlayer interactions. Notice that the screening equation for U, e}} (w,q), Eq. (5.32),
can be written in terms of the full density-density correlation function as

_|_

XE (wq) Xf(w,q) ] _

X (w, q) 0
0 X3 (w,q)

Uf} (w,q) Uﬁ(“a‘l)]: Vii(a) Viz(a) i

Ust (w,a) Uss (w,q) Vai(a) Vaz(a)

v vu(q)] [Xﬁw,q) xfw.a) | [ vii(a) vn(q)l (5.81)
Vo (a) Vaz(q) | | X3i (w,q) X3} (w,q) | [ Vai(a) Vaz(a)

The full density-density correlation function allows one to define the energy loss function
for the double layer structure as [187]

S(w,q) =-Im> X[ (w,q). (5.82)
¢

Since S(w,q) is defined as the negative of the imaginary part of a retarded Green’s
function between an operator, pq, and its Hermitian conjugate, p_q, we have that
sgn [S(w, q)] = sgn(w). Therefore, we restrict ourselves to positive frequencies, we have
that S(w,q) is positive defined and therefore can be interpreted as a spectral function.
Collective excitations due to charge oscillations will appear as peaks in S(w, q). In the
case where we only have electrons, the peaks in S(w, q) correspond to plasmons. The
inclusion of electron-phonon interactions will lead to an hybridization of the plasmonic
mode with the phonons. This situation is exemplified in Fig. 5.5, where we plot the
energy loss function of a graphene double layer structure encapsulated by hBN. It is
clear that there is a mixing between the plasmon and the phonon degrees of freedom,
which give origin to a new plasmon-phonon hybrid excitation with a new dispersion
relation.

5.5 RESULTS FOR COULOMB DRAG IN GRAPHENE-HBN-GRAPHENE STRUC-
TURES

We will now show the results for Coulomb drag between two graphene layers which are
separated by an hBN slab and also encapsulated in hBN, that is, we will focus on a
situation where all the three dielectrics in Fig. 5.1 are constituted by hBN. In Fig. 5.6
we show the results obtained for the drag resistivity between the two graphene layers
computed using Eq. (5.70). We assume that ep; s2 > kpT such that the graphene
density-density correlation function that appear in the double layer structure dielectric
function Eq. (5.34) are approximated by their zero temperature result [151]. For sim-
plicity we consider the situation where both graphene layers are doped with the same
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Figure 5.5: Density plot of the energy loss function, S(w,q) as defined by Eq. (5.82), for a
graphene double layer structure encapsulated by hBN, taking into account the ef-
fect of longitudinal optical phonons. The dashed yellow, dashed lines show the
dispersion relation of plasmons of the the double layer structure in the absence lon-
gitudinal phonons. The horizontal green, dot-dashed lines represent the frequencies
of the longitudinal and transverse hBN optical phonons. The hybridization between
the graphene plasmons and the hBN phonons is clear. We considered equal elec-
tron densities ny = ny = 0.02 nm~2 and a layer separation of d = 8 nm. S(w, q) is
normalized by —limgq_,0Re ", X[ (0,q).
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electron concentration n; = no = n. As discussed in the previous section, the effect of
the electron-electron interaction mediated by the longitudinal optical phonons of the
hBN dielectric is taken into account by replacing the dielectric constants in the bare
Coulomb interaction Eq. (5.25) by the frequency dependent dielectric tensor of hBN,
which we write as Eq. (5.79) with the parameters taken from Ref. [184] and given in
Table 5.1.

In Fig. (5.6) we plot the drag resistivity as a function of temperature, electronic
density and layer separation. In Fig. (5.6)(a) we show the drag resistivity as a function
of temperature including (Coulomb-+phonon) and neglecting (Coulomb only) the hBN
phonon mediated interaction. The Coulomb only result is obtained by setting the
dielectric function of hBN to its zero frequency value. We also compare the numerical
results from Eq. (5.70) with the low temperature, large separation universal result
Eq. (5.58), which for the particular case when we have doping of the graphene layers

reduces to (it we further assume that w%é“ < kpT)

Low T, large d __ h C(B) < 2 6||(0) ) (kBT)2
(

Drag e 28ma2 €(0) €1(0)) (vph)®n3d*

(5.83)

with oy = €?/(4meguph) the fine structure constant of graphene. As Fig. 5.6(a) shows,
the contribution of the phonon mediated interaction to the drag resistivity is vanish-
ingly small at low temperatures. At higher temperatures the additional interaction
channel due to the phonon mediated interaction gives origin to an increase in the ab-
solute value of the drag resistivity. This temperature dependence is due the factor
1/sinh? (yép/ (2kpT)) in the integration kernel Eq. (5.71), which suppresses the inte-
grand for values of y 2 €r/kpT. Thus at low temperatures, the main contribution
to the y-integration in Eq. (5.70) comes from a frequency range where the dielectric
functions in the integrand are still close to their static values. However, the phonon con-
tribution already becomes noticeable for T' = 150 K, as is more clearly seen in the linear
scale of Fig. 5.6(b), a much lower temperature than one would naively expect, taking

into account that the energy of the lowest phonon mode, wy,, corresponds to a temper-
ature of 1100 K. This is mainly due to the fact that the factor 1/sinh? (yér/ (2kpT))
that controls the integration range in energy has relatively long tails, and therefore the
effect of phonons is already observable at modest temperatures. It is also curious to
notice that in the range from 100 to 250 K, the drag resistivity including the effect of
phonons, is closer to the T2 behaviour than the purely Coulomb drag result. What is
happening is that at higher temperatures Eq. (5.83) is not valid anymore and predicts
a drag that is higher in absolute value that the full result given by Eq. (5.70). Inclu-
sion of phonons increases the drag when compared to the result obtained neglecting
them and this increase in drag approaches the result to the asymptotic value given by
Eq. (5.83). This is, however, accidental and results from a partial cancellation of errors
as Eq. (5.83) does not take into account electron-phonon interactions in any way.

In Fig. 5.6(b) also illustrates the effect of the anisotropy of hBN in the drag resistivity.
In this figure, we compare the drag resistivity between the two graphene layers correctly
including the anisotropy of hBN (Uniaxial) with the drag resistivity that would be
obtained by replacing hBN with an isotropic material characterized by a dielectric
function given by € (w) (Isotropic, €1 ) and ¢ (w) (Isotropic, €| ) , where € /| (w) are the
in-plane/out-of-plane dielectric functions of hBN. We also make a comparison between
the drag taking into account hBN phonons and neglecting them. It is observed that
the effect due to phonons is smallest in the case of isotropic dielectric characterized by
€1 (w) due to the higher value of w%o. The effect of the phonons to drag is largest when
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correctly taking into account anisotropy, where both in-plane and out-of-plane optical
phonons are taken into account.

In Fig. 5.6(c) we show the drag resistivity as a function of electronic densities for
different temperatures. It is clear that drag is substancially reduced with the increase
of electronic density due to the increase in the screening of the interlayer interaction.
There it is also clear that at lower temperatures the effect of phonons is negligible while
at higher temperatures if gives origin to a significant increase in the drag resistivity.

Finally, Fig. 5.6(d) shows the drag resistivity as a function of the separation between
the graphene layers. Besides comparing the result obtained when neglecting or includ-
ing the effect of hBN phonons, we also compare the results with the low temperature,
large layer separation approximate result Eq. (5.83), which scales as pprag o d—*, with
a low temperature approximation (Low 7T') which is computed taking the zero frequency
limit of the non-linear susceptibility and interlayer interaction in Eq. (5.70). While it is
shown that for small distances the low temperature approximation is in good agreement
with the full result, at larger distances there is a significant deviation between the two
and consequently between the full result and the low temperature and large separation
result. This deviation is a consequence of the deviations from the 72 result for large
enough distances, kgT'd 2 vph |44, 45, 183] as discussed at the end of Section 5.2.2.2.

5.6 CONCLUSIONS

In this chapter, we have studied Coulomb drag between two generic metallic layers,
paying special attention to the case of drag between two graphene layers and the role
played by the phonons of the dielectric environment, such as the one for a graphene
double layer structure encapsulated in hBN.

Following very general arguments, we have showed that in the low temperature, high
density, large separation and strong screening limits, the drag resistivity has a universal
behaviour with temperature as 72 and layer separation as d~*. We found this result to
be independent of the electronic energy dispersion relation and wavefunction structure
and momentum dependence of the intralayer transport time, only requiring that the
system displays isotropy and that a single electronic band crosses the Fermi level. Thus
we generalized the previously known result for the drag resistivity between two 2DEG’s,
with parabolic dispersion relation and constant transport time, to a much broader class
of systems including the cases of graphene and bilayer graphene.

We have seen how the effect of optical phonons of the dielectric environment that
surrounds the two metallic layers gives origin to a phonon mediated electron-electron
interaction, which is correctly taken into account by simply replacing the dielectric
constant of the medium in the bare Coulomb interaction by the Lorentz like frequency
dependent dielectric function of the polar medium. We have also seen how anisotropy
of the dielectric medium can be taken into account.

For the case of a graphene double layer encapsulated by hBN, we have seen how
the phonon mediated electron-electron interaction contributes to a significant increase
of the drag resistivity. For large layer separation, d ~ 8 nm, the effect of hBN op-
tical phonons becomes significant for temperatures higher than 150 K. As the lowest
phonon resonance frequency in the spacer material hBN corresponds to a temperature
of approximately 1100 K, this result seems to be at odds with the notion that phonon
effects should only be relevant at temperatures close and higher to the phonon fre-
quencies. This is indeed the case for other transport phenomena, like the substrate
limited electron mobility in graphene by remote phonon scattering, where real momen-
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Figure 5.6: Coulomb drag in graphene double layer structure encapsulated in hBN as a function
temperature, distance and electronic density. (a) Drag resistivity as a function of
temperature as a function of temperature for different graphene separations. (b)
Drag as a function of temperature comparing the results obtained when taking hBN
as dieletric material encapsulating the graphene layers and isotropic materials with
the the in-plane (e ) or out-of-plane (¢|) dielectric function of hBN. (c) Drag as a
function of graphene electronic density. (d) Drag as a function of the separation
between graphene layers. The lines Coulomb+phonon describe the drag resistivity
taking into account the frequency dependence of the dielectric function of hBN,
while the Coulomb only line is computed using the dielectric function of hBN in
the static limit. The line Low T, large d is computed using Eq. (5.83) and the line
Low T is computed using the non-linear susceptibility and interlayer interaction
expanded to lowest order in frequency in Eq. (5.70).
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tum transfer from an electronic state (in graphene) to a phonon mode (in a dielectric
substrate material) plays a role [130, 131]. The decay rate of the electronic state is
then overall proportional to the thermal population of the phonon mode. Our scenario
however involves the exchange of virtual phonons in a process that is of second order
in the interlayer interaction and no decay processes into real phonon states are relevant
for the drag resistivity. A similar low temperature effect of optical phonons in drag was
also reported in Ref. [169]. Although we focused on a hBN substrate, considering other
substrate materials, such as SiOs, should not qualitatively affect the obtained results.

Comparing the obtained results with the experimental data on Coulomb drag from
Refs. [39, 40] for a graphene double layer in a graphene layers embedded in a Si05/Al;O3
dielectric and from Ref. [41] from graphene in hBN, the experimental results for drag
in the Fermi liquid regime are larger by a factor of roughly three compared with the
predicted. The experimentally reported 72 dependence of pp for d = 6 nm and n =
0.018 nm~2 up to temperatures of 240 K in Ref. [41] does not disagree with our results
presented in Fig. 5.6(a). Actually, it appears that in the temperature range of 100
to 250 K the inclusion of phonon mediated interaction brings the behaviour of drag
closer to the low temperature 72 behaviour than with static Coulomb interaction only.
Nevertheless, an extension of the experimental data shown in Ref. [41] up to room
temperature would be needed to distinguish the effect of substrate phonons.

We point out that we have not considered the case where the two graphene layers are
close enough that the impurity disorder of both layers is correlated, where there can be
an exchange of energy between the electrons of the graphene layers, which is thought
to play a dominant role in the low doping limit of the graphene layers |41, 172].

We end this chapter by point out that the investigation of the phenomena of frictional
drag between two 2D electronic gases, having started almost 40 years ago [156], is far
from over and work continues to be done [183, 188, 189].



VERTICAL TRANSPORT IN VAN DER WAALS STRUCTURES

6.1 INTRODUCTION

One of the most interesting vdW structures from the point of view of applications and
basic physics is the graphene—insulator/semiconductor—graphene vdW structure, with
hexagonal boron nitride (hBN) or a semiconducting transition metal dichalcogenide
(STMDC) as the semiconductor /insulator. These kind of structures have already been
shown to realise a new kind of transistors: the Vertical Tunnelling Field Effect Tran-
sistor (VIFET) [48-50]. In a VTFET, the graphene layers act as source and drain
contacts while the insulator /semiconductor acts as a tunnelling barrier for the electron
flow along the vertical direction. By applying gate voltages to the bottom and top
graphene layers it is possible to control electrostatically the Fermi levels of both lay-
ers. This changes the electronic density of states available for tunnelling between the
graphene layers and at the same time controls the effective barrier height presented
by the insulator/semiconductor (whose band structure moves rigidly with the Dirac
points of the graphene layers). Simultaneous control of the density of states and the
barrier height with the applied gate voltages enables the switching operation of the
device. Devices based on graphene-WSes—graphene structures have already shown
ON/OFF ratios as high as 105, with high ON current and a highly insulating OFF
state [50]. The same kind of graphene-STMDC-graphene device geometry has also
been shown to operate as a photodetector [190-192]. In these photodetectors, the
STMDC acts as the photo-active region and the graphene layers act as transparent
electrodes (due to the reduced light—matter interaction in graphene). The latter collect
the electron—hole pairs created in the STMDC, which then flow in opposite directions
due to the electric field induced by the asymmetric doping of the graphene layers.
Graphene-WSes—graphene devices have already shown photoresponse times as short as
5.5 ps [192| and graphene-MoSs—graphene photodetectors have shown internal quan-
tum efficiencies (number of collected electrons at the device electrodes by the number
of absorbed photons) as high as 85%[191].

Due to the extreme high quality and atomically sharp interfaces between different
layers in vdW structures [51], the lattice mismatch and the relative alignment between
consecutive layers play a fundamental role in determining the electronic coupling be-
tween different layers of a vdW structure, having a profound impact on its electronic
and optical properties. Lattice misalignment between different layers is known to lead
to the formation of Moiré patterns in rotated graphite layers [193|. The effect of lat-
tice misalignment and mismatch has been extensively studied in the context of twisted
graphene bilayers and in graphene-on—hBN structures. It was shown, both theoretically
and experimentally, that the misalignment in graphene bilayers leads to a renormaliza-
tion of graphene’s Fermi velocity [194, 195]. It was also found out that the mismatch
and the misalignment control the formation of mini Dirac cones in the band structure
of graphene-on— hBN structures[196-201]. The dependence of the vertical current in
vdW structures on the rotation between different layers was first studied in Ref. [202]
in the context of twisted bilayer graphene. There it was found that the current is
extremely sensitive to the twist angle. Although this dependence was not at first com-
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pletely appreciated, it was soon understood and experimentally verified [52, 53| that
the misalignment between the graphene layers in graphene-hBN-graphene structures
leads to the occurrence of peaks in the current-voltage (I-V) characteristics of the de-
vice, which are followed by regions with negative differential conductance (NDC). The
position of these peaks as a function of the applied bias voltage depends on the rotation
angle between the graphene layers. As we will later see, the mechanism that leads to
the the occurrence of NDC is precisely momentum conservation in the tunnelling pro-
cess between rotated layers. This is very different from what happens in semiconductor
double barriers [203]. In a double barrier structure, a peak in the current occurs when
the energy level of the state localized inside the double barrier is located between the
Fermi levels of the to attached electrodes. It is the tunnelling assisted by the localized
state, resonant tunnelling, that leads to the occurrence of NDC. The effect of layer
misalignment in the vertical current is not restricted to monolayer graphene based de-
vices and recently it as also been explored in devices formed by two graphene bilayers
[204-206] and by one graphene monolayer and a graphene bilayer separated by hBN
[207].

In a graphene-insulator/semiconductor—graphene vdW structure, the distance be-
tween the graphene layers is very small, being of the order of few or tens of nanometres.
In this case we can expect that tunnelling will essential be coherent, not being affected
by interactions. Nevertheless, interactions can lead to incoherent processes, where
the tunnelling electrons lose energy and their momentum is also degraded. Interac-
tions can therefore lead to interesting features in the I-V characteristics. The effect of
scattering by phonons in vertical transport in vdW structures was first theoretically
studied in the context of twisted graphene bilayers [208]. More recently, signatures
of phonon assisted scattering on vertical transport have been experimentally detected
in graphene-hBN-graphite [209] and graphene-hBN-graphene structures [210]. These
signatures in vertical electronic transport has been proposed as a possible way to probe
the phonon spectrum of vdW structures.

In this chapter we study the electronic vertical current in graphene-hBN—graphene
devices with misaligned layers and for small twist angles, taking into account momen-
tum conservation rules and the effect of the rotation not only between the two graphene
layers but also between the graphene layers and the hBN slab. We have three main goals:
(i) determine under which conditions the graphene layers can be treated as electrodes,
in opposition to the case where external metallic contacts are treated as electrodes,
(ii) study the effect of the rotation between the graphene layers and the hBN slab on
the occurrence of NDC regions and (iii) study the effect of scattering by phonons and
disorder on vertical transport in these devices. This chapter is organized as follows. In
Section 6.2 we lay out the general non-equilibrium Green’s function (NEGF) approach
to mesoscopic transport. For the readers not familiar with the NEGF formalism, its fun-
damentals are summarized in Appendix H. In Section 4.3, we describe the general form
of the coupling Hamiltonian between two incommensurate 2D crystals and the crystal
momentum conservation rules that govern this coupling. In Section 6.2, we describe the
model Hamiltonian used to study vertical transport across a graphene-hBN—graphene
structure. Coherent transport in a prestine graphene-hBN—graphene device and the
possibility of occurrence of multiple NDC regions is studied in Section 6.5. The ef-
fect of scattering by disorder and optical phonons is discussed in Section 6.6. Finally,
conclusions are drawn in Section 6.7.
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Figure 6.1: Schematic representation of a typical graphene-hBN—graphene vdW structure,
graphene lattice structure and Brillouin zones of rotated graphene layers. (a)
Schematic of a typical graphene— hBN—graphene vdW structure with four hBN lay-
ers, with applied gate, Vgate, and bias, Vyias, voltages. The graphene-hBN-graphene
device is assumed to be placed on top of a hBN/SiOs dielectric substrate, which sep-
arates it from a highly doped Si gate. (b) Representation of honeycomb crystalline
structure shared by a graphene/boron nitride monolayer, showing the lattice basis,
{a1, as}, the nearest neighbour vectors 7, i = 1, 2,3, and the A/B sublattice sites.
(¢) Representation of the 1BZ of the bottom and top graphene layers, indicating
the relative rotation angle, the respective K points and the reciprocal lattice basis

{b1, ba}.

6.2 THEORY OF MESOSCOPIC TRANSPORT

The problem of electronic transport, particularly electronic mesoscopic transport, is
a delicate one. An exact treatment of transport through a mesoscopic device that
is connected to an external circuit (which includes a voltage source / battery) would
require treating the complete system, formed by the mesoscopic region plus external
circuit, on the same footing. This is clearly an infeasible task. The problem of electronic
mesoscopic transport has an analogue in fluid mechanics: the problem of computing the
fluid current between two vessels that are communicating through a small section pipe.
Once the pipe connecting the two vessels is opened, a rigorous computation of the fluid
current through the pipe would require a full hydrodynamic treatment of the fluid in the
vessels and in the pipe, taking into account the initial fluid levels in the vessels and how
the pipe is opened up: a daunting task. However, if we are not interested in the fluid
current immediately after opening up the pipe (transient behaviour), assuming that the
fluid levels in each vessel is approximately constant allows a great simplification in the
problem: by simply applying Bernoulli’s law one can then compute the fluid current
that flows through the pipe! The assumption of constant fluid levels in the vessels is
obviously only an approximation, however, provided that the section of the vessels is
much larger than the section of the connecting pipe, it can be an extremely good one.
On the problem of electronic mesoscopic transport, a similar approximation occurs if we
assume that the source and drain electrodes of the external circuit that are connected
to the mesoscopic region have constant, well defined chemical potentials (the electronic
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fluid level). This approximation will be a good one provided the density of states of
the electrodes is much larger than the density of states in the mesoscopic region. This
allows to treat the external electrodes as particle reservoirs or baths which can freely
exchange both particles and energy with the mesoscopic region. The assumption that
the external electrodes have well define chemical potentials, and therefore are in thermal
equilibrium, is at the heart of any treatment of quantum mesoscopic transport, whether
it be based on the scattering theory approach of Landauer [211, 212| and Biittiker [213],
transfer Hamiltonian approach of Bardeen [214] or the use of non-equilibrium Green’s
function approach pioneered by Caroli and coworkers [215-218|. Even though assuming
that the electrodes are in thermal equilibrium allows for an immense simplification, the
theory of mesoscopic transport remains considerably more evolved than Bernoulli’s law,
as we will see. In the following we will employ the non-equilibrium Green’s function
approach to mesoscopic transport as this formalism is the most formally rigorous one
and allows for a easy inclusion of interaction effects. A brief description to the non-
equilibrium Green’s function formalism is provided in Appendix H and in the following
we will use many of the results provided there.

In order to set up a theory for mesoscopic transport we need to specify the Hamilto-
nian describing the mesoscopic region and the external electrodes which are in thermal
equilibrium. We are interested in a two terminal device, where the central region, which
we label as ¢ (central), is connect to two electrodes, which we label as t (top) and b
(bottom). He write the non-interacting part of the Hamiltonian of the complete system
in a localized basis and in first quantization as

Ht Cr‘c,c 0
H = Tc,t Hc Tc,b ’ (61)
0 T,. H,

where Hy and H}y, are the Hamiltonians of the isolated top and bottom electrodes, H.
is the Hamiltonian of the central mesoscopic device, Ti . = T(it and T, . = CT L, are
coupling terms that describe the electronic hopping between the top/bottom electrode
and the mesoscopic device. It is assumed that there is no direct hopping between
the top and bottom electrodes. Notice, that the formalism is not restricted to systems
described in terms of localized basis and can also be applied to continuous Hamiltonians
formulated in real space as an Hamiltonian of the form of Eq. (6.1) can be obtained
from a discretization of Schrodinger’s equation [216]. The second quantized version of
Eq. (6.1) would read

H =1 Hy -+l - He e+l - Hy, -4y
F Pl T pe + bl - Tey - 4y
+¢£'Tb,c'¢c+"/’l'TC,b'¢b7 (6-2)

where 1&3 () is a row (column) vector of electron creation (annihilation) operators
that act in the i = t, ¢, b subspace (written in the same basis as Eq. (6.1)). The current
that flows through the mesoscopic device can be obtained from charge conservation, by
computing the change in the particle number of the electrodes (which later on we will
approximate as being constant, this is the approximation discussed in the previous
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paragraph). From Heisenberg equation, the change of the particle number in the top
terminal is given by

o= ()
%[ - wt]
= [l T el -] + 7 [l T ] ]
= Tl e et 19l T, (6.3)

The particle current flowing from the top to the bottom region is given by minus the
change of the number of particles in the top region and therefore the expectation value
of the electronic current is given by

Tiop(t) = —e <_d]\cfltt(t)>

= e (Dl(0) Toc e®) +or (W) T (), (6)

which can be expressed in terms of lesser Green’s function as
T (t) = €Ty [Tey - Gre(t,t) — The - GSi(t,1)] (6.5)

We will now specialise to the stationary state regime. A possible calculation scheme
(albeit not very realistic) is to consider that in the remote past the mesoscopic region is
disconnected from the electrodes (by setting T . = TCTt =0and T}, = =T eh = 0) but
with a bias already applied between the two electrodes. Since the mesoscopic region
is disconnected from the electrodes no current is allowed to flow and all the individual
parts of the system are in thermal equilibrium. Then, one turns on the hopping terms
contacting the electrodes to the mesoscopic region (T . = T(It #0and T, . = TCJC L 7 0),

allowing a current to flow due to the applied bias. Essentially we are turning on a switch.

Since we are working under the assumption that the electrodes are particle reservoirs,
the electrodes will remain in thermal equilibrium, with the same occupation factors
as they had before contacting them to the mesoscopic region. The initial state of the
mesoscopic region is of no importance since in the stationary state that information will
be washed away due to the coupling to the electrodes. This calculation scheme for the
current in a mesoscopic device was initially proposed by Caroli and coworkers [215] and
is generally referred to as the partitioned approach. An alternative computation scheme
was later proposed by Cini [219]. Instead of making the fictitious assumption that in the
initial state the electrodes are disconnected but with a bias already applied, it considers
instead that in the initial state electrodes and mesoscopic region are all connected and
in thermal equilibrium. Then, it is the bias voltage that is turned on. This second
approach is generally referred to as partition-free approach. If we are interested in the
transient behaviour of the current, the partitioned and the partition-free approaches
will clearly differ as they are describing physically different processes. However, if we
are only interested in the stationary state current we might hope that the system will
lose memory of how it was initially prepared and that both approaches will predict the
same steady state current. Indeed, it was proved rigorously by Stefanucci and Almbladh
[220] that, for non-interacting electrons, both approaches yield the same steady-state
current provided that the energy levels of the electrodes form a continuum, that is, if
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they are macroscopic. The continuum of states in the electrodes leads to a dephasing
mechanism which ensures that a steady state is reached and that this steady steady is
independent of the past history. No theorem of equivalence between the partitioned and
partition-free approaches exists for the interacting case. We can expect, however, that
interactions will further contribute to the loss of memory of the system and therefore
both approaches should also coincide for the steady state current in the interacting
case. The partitioned approach is technically simpler, particularly in the interacting
case, and as we are interested in the steady state current, we will employ it in the
following.

Equation (6.5) expresses the current in terms of a Green’s function connecting the
mesoscopic region to one of the electrodes. It would be useful, if one could express
the current only in terms of a Green’s function of the mesoscopic region, with the
electrodes only acting as particle reservoirs. This can be done by integrating out the
electrodes, which in the case of non-interacting contacts can be done exactly Assuming
that in the distant past the system is uncontacted (with Ti. = T t=0and T} =

C

T(Ib = 0) and treating the T . and T in perturbation theory (to all orders), the exact

Dyson equation for the contour-ordered Green’s functions ch(t, t') and th(t, t') (see
Eq. (H.28)) reads

G (t,1) = /CdthSf(t,tl) Ty GE(t1, 1), (6.6)

G (t, ) = /CdthgC(t,tl) Ty Gﬁf(tl,t’), (6.7)

where G?f (t,t") is the Green’s function of the top electrode for the uncontacted system
and ch(t, t') is the Green’s function of the mesoscopic region for the contacted system.

In its turn, the Dyson equation from the Green’s function of the mesoscopic region,
G, (t, 1), reads

GE.(t,t) /dtl/ dt2GEE (t,t1) - B (1, t2) - G (t2, t)
/dtl/dtQG (t,t1) - f (t1, t2) - GE.(t2, 1)

+/ dtl/ dt2GC(t,1) - B4 (t1, t2) - Ge(ta, ), (6.8)
C C

where Elnt(tl, t9) is a self-energy due to interactions in the mesoscopic region and the
self-energies due to the contacts are given by

S0 (1) = Tep - GU (11) - T, (6.9)
B () = Tep - Gy (4, 1) - T (6.10)

Notice that Egs. (6.6), (6.7) and (6.8) are still valid if the electrodes are interacting
provided we ignore processes in which an interaction line goes over the hopping terms
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Ti /Tt or Ty, o/Te [218]. Using Langreth’s rules (see Eq. (H.67)) from Egs. (6.6) and
(6.7) we write the lesser Green’s function as

G (tt) = /dthSf (t,t1) - Tre - GAL(t1, 1)
+ /dtlaﬂﬁ(t,tl) Te GEo(tr, 1), (6.11)
GS(t,t) = /dthgc(t,tl) T - G (t, 1)
+ / A GE(t, 1) - Toy - GUS (1, 1), (6.12)
Plugging the above expressions into Eq. (6.5), the current can be expressed as
L (t) = ;/dtlTr (B8t 1) - Gau(t, ) + Bt 1) - Gt 1)]

h At Tr [GS(t, 1) - Bit(t, 1) + GE (1) - B (11, 1)] (6.13)

where Ef /4/< (t,t') are defined in a similar way to Eq. (6.9) but replacing G?”tc (t,t)
by the corresponding R/A/ < Green’s function. Since we are interested in the steady
state current, when translation invariance is recovered such that all Green’s functions
become functions only of time differences, it is useful to represent all the quantities in

terms of Fourier transforms in time. If we further use the cyclic property of the trace
we can write the current in the steady state as

fen = [ 52137 @) (GAw) - GE)

% / Z—:Tr [(Ef‘(w) — Eﬁ(w)) -G;C(w)] . (6.14)

Since the external top electrode is in thermal equilibrium, G 5( ) can be obtained
from the fluctuation-dissipation theorem (see Egs. (C.2) and (C 3) in Appendix C)

GVS(w) = ifi(w) AL (W), (6.15)
Gl (W) = —i(1— fi(w)) AL (), (6.16)

where A (w) =1 <G3’tR(w) - Gﬁ’tA (w)) is the spectral function of the uncontacted top

electrode and fi(w) = (eﬁ (w—pe) 4 1)_1 is the equilibrium Fermi distribution function
of the electrode, with chemical potential u. Therefore, by introducing the level-width
function due to the contacts

L) =i (3f(w) - 2t w)). (6.17)

we can write
5 (w) = ife(w)T(w). (6.18)

Similarly the greater Green’s function can be written as

X7 (w) = =i (1= fo(w)) Te(w). (6.19)
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Similar equations are valid for the self-energy due to the bottom contact, 2§ (w). If we
also introduce the spectral function of the mesoscopic region as (Eq. (A.25))

Acc(w) =i (GR(w) — GAw)), (6.20)

from Eq. (6.14) we obtain the Meir-Wingreen [221] formula for the current

how=—3 / Z—:Tr Te(w) - (fulw)A@) +iG<(w))] (6.21)

(where for simplicity we have suppressed the central region indices ¢, c). Notice that
if the central mesoscopic region were in equilibrium with the top contact, by the
fluctuation-dissipation theorem we would have G (w) = ifi(w)Acc(w) and the cur-
rent would be zero. Therefore we can see the current as a measure of the “non-
equilibriumness” of the system.

We now provide an expression for the spectral function that will later be useful. From
the definition Eq. (6.20), the spectral function can also be written as

Aw) =i (G (w) - GHw))
=iG W) ([GAw)] " = [67w)] 1) - G4 w)
=GR W) (W) G w), (6.22)

with the total decay rate matrix given by

T(w) =i ([GA(M)}‘I - [GR(w)]_1>
=i (Zf(w) - W) =i (7 (w) — B (w)) . (6.23)

In the same way that Eq. (6.22) is obtained, the spectral function can also be written
as
Aw) = GMw) T(w) - GR(w). (6.24)

6.2.1 Coherent and incoherent contributions to the current

In the Meir-Wingreen formula, the bottom and top electrodes seem to play different
roles, with the current explicitly depending on I'y(w) but not on I'y(w). It is clear that
in a two terminal device, the two contacts should play the same role. To see this, we
rewrite the Meir-Wingreen formula using the fact that the spectral function can be
written as A(w) = i (G~ (w) — G=(w)) (see Eq. (A.26) in Appendix A) such that the
current is written as

T =5 [ GET M) (A@)G @ + (1~ AW)E@)].  (625)

The Keldysh equation for the greater and lesser Green’s functions (Egs. (H.71) and
(H.90)) reads
GZ(w) = GR(w) - 22 (w) - GMw), (6.26)

where the greater /lesser self-energy can be split into contributions due to the external
electrodes and contributions due to interactions (see Eq. (6.8))

TR(W) = B2 (W) + B (w) + B2, (w). (6.27)
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Writing the contact self-energies in terms of the level-width functions as in Egs. (6.18)
and (6.19), the current can be written as the sum of two terms

h incoh
Iy = 100 4 p{meeh), (6.28)

with the coherent term given by the Landauer formula

coh € dw 0
15 = =% [ 225 - 1) T ) (6.29)
with the coherent transmission function given by
Ty @) = Tt [Du(w) - GR(w) - Th(w) - G (w)] (6.30)

and the incoherent contribution reading
incoh .€ dw
15 = =it [ AT L) 67w S5 ) - G)]

—if [ S0 A@) T M) 67w) B w) - 6] . (631
The incoherent contribution to the current is only non-zero in the presence of interac-
tions and plays a role similar to that of vertex corrections in linear response formalism.
It corresponds to processes that are assisted by interactions, involving the emission or
absorption of interaction carrier bosons (for example phonons). Notice that in Eq. (6.31)
the top and bottom contacts still appear in an asymmetric way. To proceed we must
specify the interactions the electrons experience in the mesoscopic region.

We will study the case where the electrons in the mesoscopic region of the device
interact with a real bosonic field, ¢¢, via the Hamiltonian

Hine = ' - M¢ - e, (6.32)

where M, is an electron-boson coupling matrix. The bosonic field is governed by the
bare Hamiltonian
1
Hy = ch < ac + ) (6.33)

where w¢ is the frequency of the bosonic field in mode ¢ and az (a¢) are the creation

(annihilation) bosonic operators, with the bosonic field ¢¢ given by ¢ = az + ac.
Therefore, the retarded /advanced Green’s functions for the bosonic field ¢¢ reads

R/A 2we
D = . 6.34
¢ W) V2 — w? + sgn(v)i0t (6.34)

We will assume that the bosonic field is in thermal equilibrium and therefore, by the
fluctuation-dissipation theorem we obtain

D?(V) = £i2mb(Fv)2wesgn(v)s (v* — wg) , (6.35)

where b(v) = (e — 1)_1 is the Bose distribution function. Notice that considering an
interaction of the form of Eq. (6.32) is not too restrictive, as an electron-boson inter-
action can also describe two body interactions (such as Coulomb) since the latter can
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be decoupled via a Hubbard—Stratonovich transformation. In a non-crossing approxi-
mation, the greater/lesser electron self-energy due to the interaction (6.32) is given by
the Fock contribution (see Egs. (H.82) and (H.62))

¥2 (W) =i dVMC G (w—v)- M{DZ(v). (6.36)

int

Recalling that the greater/lesser Green’s function is given by Eq. (6.26) we obtain

»2 (W) =i dVMC Giw—v) BF(w—v) GMw—v)  M}DE(v)
+i ;l;MC Giw—v) B (w—v) G w—v) M}DE(v)
+1i ;ZMC Giw—v) 35 (w—v) GYw—v) - MIDZ(v),  (6.37)

which is a self-consistent equation for th(w). To lowest order in the electron-boson
interaction, we neglect the last term in the previous equation [218] and obtain

The(w) =
~ Z i fo(w — swe)sb(swe) M - GT(w — swe) - Ty (w — swe) - G (w — swe) - Mg
s=%1
+ Z i fi(w — swe)sb(swe) Mg - G (w — swe) - Th(w — swe) - G (w— swe) - Mg
s==+1

(6.38)

with the greater self-energy being obtained by replacing f;, — 1 — fi 1, and b(sw¢) —
b(—sw¢). Inserting Eq. (6.38) into Eq. (6.31) we obtain the incoherent current assisted
by the absorption or emission of one boson

incoh,1) 1)(s, s, s,
1) = -2 3 [ WO @T0 @)+ WO O]

s=+1
(6.39)
with the one-boson assisted transmission functions defined as

E(Z')( ’C)( ) =Tr [To(w) - GRw) - M, - GRw - Swe )
Ty (w— swe) - GA(w — swe) - M} - GA(M)} 00 =t,b (6.40)

and the thermal occupation factors Wﬁ? (S’O( ) given by

Wé?(sag) (w) = fe(w) [1 — fo (w — 8&)@*)] [—Sb(—swc)]
—[1 = fo(w)] for(w — swe) [sb(swe)], €6 =t,b.  (6.41)

It can be explicitly checked that Wt(i)(s’O (w) = 0, such that the second term in
Eq. (6.39) is zero. This cancellation is necessary and expected, since in steady state no
charge accumulation can occur in the device, such that the current that flows from the
top contact into the mesoscopic region must be the symmetric of the current that flows
from the bottom contact into the mesoscopic region: I;_,;, = —I,_¢. This implies that
terms in the current that depend only on the occupation factor of one of the electrodes



6.2 THEORY OF MESOSCOPIC TRANSPORT

must cancel out. In Eq. (6.39) both top and bottom contacts play symmetric roles.
Equation (6.39) has a very simple interpretation: it represents the probability of an
electron being injected from the top electrode into the mesoscopic region, emitting/ab-
sorbing (respectively for s = +1) a boson and then being collected by the bottom
electrode minus the probability of an electron being emitted by the bottom contact,
absorbing /emitting (respectively for s = £1) a boson and then being collect by the top
electrode.

Processes assisted by more than one boson can be obtained in a similar way as before
by successive iteration of Eq. (6.37). The incoherent contribution to the current can
then be written as

)

+00
incoh € dw 1)(51,61)5--5(Sns6n T )(81,61)5--(8ny6n
I == Y [ Gawfe e e @) (6az)
{s;-n}::I:tl

with the n-boson assisted transmission function given by

ﬁfg)(sl,g1)7...,(sn£n)(w) =Tr [Ft(w)-
CGR(w) - Mg, - G(w — s1wg,) - M
. I‘b(w — S1W¢ — SnWCn)'

GMNw — s10¢ — spwe,) - Mgn e G w = s10¢,) - Mgl -G w)|, (6.43)

-G (w — s1we — spwe, )

n

and the occupation factors Wt(?))(sl’ﬁ) ""’(s”’C")(w) defined as

Wt(’g)(sl,gl),...,(sn,ﬁn)(w) _

fo(w) [1 = fo(w = siwe, ... — spwe, )] X
X [=51b(—=s1w¢,)] - [—snb(—spwe, )]
—[1 = fi(w)] folw = s1we, .. — Spwe, )X
X [s1b(s1we, )] - [snb(spwe,)] . (6.44)

Just as for the one-boson case, and in accordance with the steady state condition, it
can be checked explicitly that the quantity

Wt(?)(81,é‘1),---7(5n7€n)(w) -0 (6.45)

)

(defined similarly to Eq. (6.44) by replacing b— t) and therefore terms involving only
the occupation factors of the top electrode do not make any contribution to the current.
All of the terms in Eq. (6.42) have the same interpretation as the one-boson contribution:
they represent the difference in probabilities between an event in which an electron is
emitted from the top electrode, emits/absorbs (respectively for s; = +1) n bosons and
is then collected by the bottom electrode and the event in which an electron is emitted
by the bottom contact, absorbs/emits (respectively for s; = +1) n bosons and is then
collect by the top electrode.
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6.3 COUPLING BETWEEN INCOMMENSURATE 2D CRYSTALS

In order to describe the general form of the coupling between two 2D crystals we follow
the approach of Refs. [202, 222|. The atomic positions in the two crystals, which we
label as 1 and 2, are given by

Rn,a,é = R[T)L,Z + Tal
=njayy +ngagy + Tap, £ =1,2 (6.46)

where REM are the Bravais lattice sites of layer £ = 1,2, which is spanned by the vector
basis {aj¢,a2¢} and 7, is a sublattice vector, which also encodes the out-of-plane
displacement between both layers. The index n = (nj, ng) runs over the Bravais lattice
sites of each layer and the indice a includes both the sublattice and also the orbital
degrees of freedom. The reciprocal lattice sites of each layer are given by

G =mbig+noboy, £=1,2 (6.47)

with {by ¢, ba ¢} the basis that spans the reciprocal space of layer £ = 1,2. In a tight-
binding representation, the second quantized form of the interlayer coupling Hamilto-
nian describing hoping from layer 2 to layer 1 is written as

Tig=— Y t(Rnat Rimp2) ¥ o1¥mb2, (6.48)

n,a,m,b

where wn a (Ynae) are the electronic creation (annihilation) operator, for a local-
ized state at the position Ry, q¢ of layer ¢ and in the sublattice site/orbital a, and
t (Rpa,, Rimp,2) are hopping integrals. Naturally, the hopping Hamiltonian between
electrons from layer 1 to layer 2 is given by Th; = TlT - Representing the electronic
operators of each layer in its respective Bloch basis 7

- k'Rn a —
wnaf \/7 Z ‘ ’ ’[/(/}I(’a7£7 E - 17 27 (6.49)
where N, is the number of lattice sites in layer ¢, the interlayer coupling Hamiltonian
becomes )
]-7
Tip=— Y @5 (kK) vl v (6.50)
k,a,k’.b

where the hopping integrals #,, (k,k’) are given by

1 2) (k k/)

7

ﬁ Z e Bnalt Ry, g1, R po) €€ Trma, (6.51)
In a two-centre approximation, ¢ (Ry, 4.1, Ry p2) only depends on Ry, 41 — Ry p2 and
as such it is possible to write it as a Fourier transform [222]

d? - _
t(Rna,1, Rmp2) = \/Acelll cellZ/ q2 ((lle (q) e (Rn.a.1 Rm’“), (6.52)

where Acen g is the area of the unit cell of layer /. Notice that in general, while R,, 4 ¢
are 3D vectors, q is a 2D vector. Therefore, q-R,, 4 ¢ projects the planar components of

R, o ¢, with the vertical separation between sites Ry, 4,1 and R, 2 encoded in t((lll’f) (q).
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Inserting the Fourier representation of the hopping integrals, Eq. (6.52), into Eq. (6.51),
performing the sum over the Bravais lattice sites of both layers using the fact that
don eik'R%f =Ny ZGM 5k:Gn,w while assuming that both layers have the same area
A = NiAcenn = NzA‘CQILQ and noticing that the Dirac J-function is related to the

Kronecker delta by §(k) = Adk/(27)?, we can write tz(lfl;?) (k, k') as

t~§£,)2) (k, k/) _ Z eiGn,yTn,a,lt((:lf) (k/ + Gm,z) eiiGm’Q.T"’b’Q‘Sk—i-Gn,l,k’+Gm,2-
Gn,1,Gm,2
(6.53)
The following important result is thus obtained: a Bloch state from layer 1, with
crystal momentum k, only couples to a Bloch state of layer 2, with crystal momentum
k', provided the generalized umklapp [222] condition

k + Gn,l =k + Gmyg, (654)

is satisfied, for some reciprocal lattice vectors G 1 and Gy, 2, respectively from layer
1 and 2. This result can be interpreted as a generalization of the conservation of
crystal momentum, but taking into account that while all the momenta k + G, 1 are
equivalent from the point of view of layer 1, they are not equivalent from the point of
view of layer 2. Equations (6.50) and (6.53) provide a general starting point to describe
the coupling between two incommensurate layers. In general, the integral hoppings in
real space t (R q,1, Ry p2) should decay rapidly with |Ry 1 — Ry p2| and therefore
tfll,l’f) (q) should also decay with |q|. Therefore, in general, only a few tsl’f) (k+ Gy)
with the smallest k + G,, (measured from the common centre of the Brillouin zones
of both layers) need to be considered. In the next section we will use Egs. (6.50) and
(6.53) in order to describe the coupling between the graphene layers and the hBN slab.

6.4 MODEL HAMILTONIAN FOR GRAPHENE-HBN-GRAPHENE STRUCTURES

We want to study the vertical current flowing through a device formed by a slab of
hBN, formed by A monolayers, sandwiched between two graphene monolayers, refered
to as bottom (bg) and top (tg) graphene layers. The bottom and top graphene layers
are contacted my metallic electrodes, such that a bias voltage, Vias, is applied between
the top and bottom layers and a gate voltage, Vgate, is applied to the bottom graphene
layer. The device structure is schematically represented in Fig. 6.1. The finite bias
voltages drives a vertical current through the device and the gate voltage allows for
the control of the doping levels of the graphene layers. Like graphene, hBN also has
a honeycomb structure, with boron and nitrogen atoms at the two inequivalent sites.
We assume that the hBN slab is a perfect crystal, where the individual monolayers are
perfectly aligned with an AA’ stacking [184, 223], i.e., consecutive honeycomb layers
are perfectly aligned but with the boron atom of one layer on top of the nitrogen atom
of the next and vice versa. Both graphene layers are assumed to be rotated with respect
to the hBN layer and also with respect to each other. Taking the bottom graphene
layer crystallographic alignment as a reference, we have that the top graphene layer is
rotated by an angle of 6y, and the hBN slab is rotated by an angle of 0ygn. Therefore,
if {b1 bg, b2t} are the reciprocal lattice vectors of the bottom graphene layer, then the
reciprocal lattice vectors of the top graphene and of the hBN slab are given by

bitg = R(btg) - bibg, (6.55)

1 .
b; hpN = mR(QhBN) “bipg, 1 =1,2 (6.56)
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with R(6) a rotation matrix

R(0) = cosf) —sind ’ (6.57)
sinf  cosd
and the parameter § is defined as
§=TBN 0 18% (6.58)

Qg

where ag and aypn are, respectively, graphene and hBN lattice parameters. We will
assume that all the rotation angles are small. We write the Hamiltonian of the
graphene-hBN—graphene structure as

H = Htg + Hbg + HygN + (ThBN,tg + ThBN,bg + h.C.) s (6.59)

where Hig )y, is the Hamiltonian describing the isolated top/bottom graphene layer,

Hygpn is the Hamiltonian of the isolated hBN slab and Ty g /by = TtTg /bghBN describes
the hopping of electrons between the graphene layers and the hBN slab. The vertical
current in the device will be dominated by low energy states, which are close to the
+Kig/ng points of the top and bottom graphene layers. As such we use the Dirac
continuous model to describe the graphene layers. In the sublattice basis the Bloch

form of the Hamiltonian of the bottom graphene layers reads

Hbg = qultﬁbg ’

k,7

) vph k| e T bg
[ e o ‘ ’ 'Tnbkr,bg7 (660)

Toph k| ek ps. Vog

where 't,bL bg = [ } is a vector of creation operators in the sublattice

wlT(T,A,bg d)lT(-r,B,bg
A and B of the bottom graphene layer, with momentum k measured from the the corner
of the Brillouin zonerKyg, with 7 = £1. 0y, is the angle between k and Ky, and
Vi is an on-site potential induced by the applied gate and bias voltages. We choose
the zero of energy to lie at the Fermi level of the bottom graphene layer, in which case
we have Vi = —€p g, Where €pp, is the Fermi energy of the bottom graphene layer
measured from its Dirac point. The Hamiltonian of the top graphene layer has the
same form

% T’l)Fh ‘k/’ e_iﬂgk',tg

Ht = 'l,bT/ . & . . ’l,bk/ Jtes (661)

g kZT k’ tg roph ’k/’ @ZTGk/,tg ‘/tg 718

but with k’ measured from the 7Ky, point of the Brillouin zone of the top graphene layer

and 6y 1, being the angle between k’ and K. Notice that we have K¢z = R(0hsN) K-
If we use the same reference frame in Eq. (6.61) as in Eq (6.60), we have that

K =k +7AKp,, (6.62)

with k measured from the 7Ky, point and AK}, ; = Ky, — K¢ being the displacement
between the Dirac points of the two graphene layers. Just as for the bottom layer, Vi,
is an on-site potential which, taking into account the bias voltage applied between the
two graphene layers, can be written as Vig = —€p g — €Vhias, Where €p g is the Fermi
level measured from the Dirac point of the top graphene layer. In Fig. 6.2 we show how
€rpbg and €f e change as a function of Vgate and Viiag, based on a simple electrostatic
model (see Appendix I).
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For small rotation angles, electrons will tunnel through the hBN slab also close the
Kign = R(Onen) - Kbg/ (1 + ) point. Close to the Kypn point and neglecting the
dispersion with the in-plane momentum of the hBN bands, we write

N
HhBN_ZZd’T | P ’ YK/, £ 1hBN
- k” £ hBN 7,8,
=1k r 0 Ex+V;
N-1 ; 0 4, T
+ Z Z ¢k’7’,€+1,hBN ’ ’ 1'bk’7’,6,hBN + h.c, (663)
= ~t; 0

] — ] ] i i -
where Py, gy = Vs BenBN  Yky Neny | 18 @ vector of creation operators in the

boron (B) and nitrogen (N) sites in the /! hBN monolayer, with crystal momentum
k" measured from 7Kpgn, Eg and Eyn are the on-site energies at the boron and ni-
trogen sites (measured with respect to the Dirac points of graphene in the absence of
any applied voltages), t; is an intralayer hopping integral. Typical values for these
quantities are given by Fp ~ 3.33 eV, Ex ~ —1.49 €V [224]| and ¢, ~ 0.32 eV [223]. V}
is the applied voltage induced on-site energy. Due to the large energy offset between
graphene and hBN sites, the charge accumulated in the hBN layers will be negligible.
In this case, using a simple electrostatic calculation, we obtain (see Appendix J)

l
W = —€Fbg — ./\/.7_1_1 (GF,tg + eVbias) . (664)

We assume that the bottom graphene layer only couples to the £ = 1 hBN layer and
top graphene layer only couples to the £ = N layer.

We write the coupling Hamiltonians Ty, g /bg = T:g Jbg hBN 1 the form of Egs. (6.50)
and (6.53) specialized to the case of graphene and hBN with a small rotation an-
gle and considering only the three most relevant processes. Let us first focus on the
coupling between the bottom graphene and the hBN slab (the bottom graphene cou-

ples to the £ = 1 hBN monolayer). In Eq. (6.53), we assume that the hopping in-
tegrals téll}: BN.be) (k + Gy, bg) are weakly dependent on momentum and, since we are

interested in states close to the Ky, point, we approximate tgll}; BN.bg) (k+ G pg)

t((llél BN.bg) (£Kbg + G bg)- The three processes with smallest, and equal, |+ Kpg + G bl

are the ones with (see Fig. 6.1(c))

Gopg = 0, (6.65)
Gipg = £bo by, (6.66)
G27bg = :Fbng. (6.67)

Notice that the these three £Ky + Gy, g are nothing more than the three equivalent
(for an isolated graphene layer) Dirac points of the bottom graphene. According to
the generalized umklapp condition Eq. (6.54), the states of bottom graphene with
momentum k will couple to states in the boron nitride with momentum
K =k+ Gn,bg — Gm,hBN~ (6.68)
For small rotation angles, the states with smallest [k’ + G, ngn| are obtained for n = m
with
Gonpn =0, (6.69)
G1nBN = Eba BN, (6.70)
G2 1BN = Fb1 BN, (6.71)
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such that the most relevant are the ones where the momentum in the hBN layer is
given by

k' =k +71gb®, (6.72)
with the vector g]ﬁg given by
g = 0, (6.73)
g]fg = bope — bausN, (6.74)
ggg = —bypg + bruBN. (6.75)

Since all the distances |£Kpg + G, 1g| are the same we omit the momentum depen-
dence of t,; and also suppress indice (1IhBN,bg). With these approximations and
considering only the three processes given by Egs. (6.73)-(6.75), the coupling Hamilto-
nian, Egs. (6.50) and (6.53), between the bottom graphene and the hBN slab reduces
to

ThBN,bg = — E [¢T b v b }
,0g kT—‘,-Tgng,Bl,hBN kT+Tgng7N17hBN
k,7n

where k; is measured from 7Ky, with the matrices T and R, defined as

T = [thC tBC ] (6.77)
INnc iNc
1 0
R, = . 6.78
[ 0 einQﬂ'/S ] ( )

Typical values for the hoppings between the carbon and boron/nitrogen sites are given
by tg,c =~ 0.432 €V and tn,c >~ 0.29 eV [224]. In the derivation of Eq. (6.76), we have
used the fact that e?GnbgTabg — iGn hBN'TBL,hBN — 1, e!Gnbg'TB,bg — iGn LBN"TNI,hBN —

e™m27/3 where

TAbg = 0, TB1,hBN = 0,

a1 bg + a2 bg _ Albg + az bg
f? TN1,hBN = f’

are the sublattice vectors for the graphene and the £ = 1 hBN monolayer. Notice the
matrices R, just perform a rotation of the graphene and hBN sublattice spinors. The
coupling Hamiltonian between the top graphene and the £ = A" hBN layer, TipN tg, as

TB,bg =

the same form as Eq. (6.76) just replacing by® by btg, with

gf = 0, (6.79)
g = b2 tg — b2 npN, (6.80)
g = —bi1tg + b1 uBN, (6.81)

and noticing that in the case when A is even it is also necessary to replace

ei’rn27r/3 0
0o 1]

R,, — [ (6.82)
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since in a hBN slab with AA’ and an even number of layer, the position of the boron and
nitrogen atoms in the last layer is flipped in comparison to the first layer. Hamiltonians
of the form of Eq. (6.76) have previously been used to study twisted graphene bilayers
[194, 225-227| and graphene—on-hBN structures [224, 228, 229|.

Considering the three processes coupling the bottom graphene with hBN, in T},gN g,
and the three processes connecting hBN to the top graphene layer, in T, 1N, there
are nine hBN mediated processes coupling the bottom graphene layer to the top one.
These nine processes couple a state from the bottom graphene layer with momentum k
(measured from 7Kjyg) to states of the top graphene layer with momentum k +79Q,, ,
(measured from 7Kyg), with Q,, ,,, given by

Q,m =AKy + g8 — g nom=0,1,2. (6.83)

The processes with n # m involve transfer of momentum by the hBN lattice, while
processes with n = m do not. At zero magnetic field, the overall three-fold rotational
invariance of the graphene-hBN-graphene structure implies that these nine processes
can be organized in three groups of three, with processes in the same group being related
by 27 /3 rotations, therefore giving the same contribution to the vertical current. The
three groups are

{Qo0, Qi,1, @22},

{Qo,1, Qi2, @20}, (6.84)
{Qo,2, Qi,0, @21},

with length of the vectors in each group being the same. For small rotation angles and
lattice mismatch, 0 = anpn/ag — 1, we have

Q0|
| K2’ SN (6.85)
g
1Qo.1|” 02 5 2 V3
K2 = tg +3 (HhBN + 0% — ethhBN) + 359tg; (6.86)
g
190 02, + 3 (02ax + 02 — 01,0 V366
K2 - i 3 (Ohpy + 07 — big hBN) — V 366k, (6.87)
g

with Ky = 47/ (3ag) the length of K.

6.5 COHERENT TRANSPORT IN GRAPHENE-HBN—-GRAPHENE STRUCTURES

As previously discussed in Section 6.2, when applying the NEGF formalism to meso-
scopic transport, one must make a distinction between the electrodes, which are as-
sumed to be non-interacting and in thermal equilibrium, and the central mesoscopic re-
gion. In a graphene-hBN—graphene device, one might be tempted to treat the graphene
layers as the electrodes. However, as also discussed in Section 6.2, in order to ob-
tain a steady state current, it is required that the electrodes are macroscopic with a
continuum of electronic states. Although the graphene layers do have a continuum
of states (for large enough samples), due to momentum conservation, the number of
states that can couple (efficiently) to a given Bloch state of hBN is finite. In this
situation, it seems to be safer to treat the graphene layers as part of the mesoscopic
device and to treat as electrodes the metallic contacts that are attached to graphene.
This is also the most convenient approach to include effects of interactions in the
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Figure 6.2: Computed Fermi levels for the bottom and top graphene layers as a function of bias
voltage for different gate voltages obtained using the electrostatic model described
in Appendix J. We assume that the graphene layers have no intrinsic doping and
that the graphene-hBN—graphene structure is separated from the Si bottom gate
by an hBN/SIO, dielectric with thickness dppny = 40 nm and ds;o, = 285 nm,
and out-of-plane dielectric constants egjo, = 3.9 and eppn = 5.09[184], respectively.
We assumed that the two graphene layers are separated by 4 monolayers of hBN,
corresponding to a distance between the graphene layers of d ~ 1.6 nm.

graphene layers as we will see in the next section. In order to compute the coher-
ent vertical in the graphene-hBN-graphene device we use Eq. (6.29), with GF/4(w)
the retarded/advanced Green’s function of the graphene-hBN-graphene device and
T /p(w) the level width function due to the metallic contacts that are attached to the
top/bottom graphene layers. Notice that due to the Bloch diagonal structure of the
graphene-hBN—graphene structure, Eq. (6.59), we can write the matrix elements of the
Green’s function connecting the top and bottom graphene sites as

(6.88)
(6.89)

[GRW)],,, = Gi (W) Tigne(w) - Gry (),

[GA(“’)]M = GgéA(w) g tg(w) - G?éA(W)a

where G?é%; are the retarded /advanced Green’s function of the top/bottom graphene

layers in the absence of graphene-hBN coupling (but taking into account the coupling
to the metallic contacts) and where we have defined the hBN mediated tunnelling

amplitudes

(6.90)
(6.91)

Tig b (w) = Tignpn - Ghgn(w) - Thex,bg

Thg,16(w) = Thgnpx - Giipn (W) - ThN tg:

with Gféﬁ the Green’s function of the hBN slab, which in general takes into account
its coupling to the graphene layers. Therefore, the transmission function Eq. (6.30) can
be written as

T (w) = Tr |G (w) - Tolw) - o (w) - Tig g (w)-

Gpli(w) Th(w) G (W) - Thgg(w)| . (6.92)
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bs only take into account the coupling of the
graphene layers to the metallic electrodes, we can use Eqgs. (6.22) and (6.24) to write

the spectral function of the bottom and top graphene layers as

Noticing that the Green’s functions ng/

A (W) = GY) (W) Typ(w) - GH (w)

tg/bg tg/bg tg/bg
= Gy (@) T (@) - G (@), (6.93)

The coherent transmission function Eq. (6.92) can thus be expressed as
0
T (@) = Tr [AL (@) - Tigpg(w) - Aby (@) - Thgg(w)] - (6.94)

The coherent contribution to the vertical current is given by Eq. (6.29) with trans-
mission function given by the above equation and with the occupation factors given
by fo(w) = f(w) and fi(w) = f(w + €Vhias). This is the expression for the current
that would be directly obtained if we had treated the graphene layers as the electrodes
(taking into account their coupling to the metallic contacts), in which case the level
width functions entering Eq. (6.30) would be given by I', = TipN bg - Agg - ThBN,bg
and I'y = TipN tg - Agg - TiBN,tg- As such, we have proved that in the non-interacting
case, treating graphene as part of the mesoscopic region or as a part of the electrodes
is inconsequential. We will leave the discussion for the interacting case for the next
section.

In order to make analytical progress, we will employ the wide-band limit for the

metallic contacts, which amounts to neglecting any frequency dependence of I'; s, and

writing 25{;4 = +il'y/,, which in general is a good approximation for metals, and

assuming that the contacts couple equally to all graphene states, not spoiling translation
invariance, that is

Ty /p(w) = Ty plig g (6.95)

where Iy, 1, is the identity operator in top/bottom graphene subspace. We expect that
this last approximation will work well for devices in which the metallic contacts are
deposited on a small region of the graphene sample (but might fail drastically when
a significant portion of the graphene layers are contacted to the metal). Within these
approximations, the only effect of the metallic contacts is to introduce a broadening
factor of vig/he = T'yp/2 in the Green’s function of the bottom/top graphene layer,
which in the terms of graphene eigenstates reads

2'7tg/bg
2 2 ’
Wig/bg — Avrhlk[)” + Ttg/bg

A?g/bg7k777/\(wtg/bg) = ( (6.96)

where A = £1 is the band index and we have written wp, = w + €ppg and wye =
w + €rtg + €Vhias, Which correspond to energies measured from the position of the
Dirac point in the bottom and top graphene layers, respectively. We will now write
7;?2) (w) more explicitly. Using the graphene-hBN coupling Hamiltonian Eq. (6.76), the
transmission function can be written using the Bloch momentum basis as

2
TVw =3 ‘tg (K + 7 7, X| Thg (@) [, 7, M| ¢
k)N

n,m,T

X A et r @y rn (Wig) Abg e r (W) (6.97)
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Figure 6.3: Tunnelling density of states in a graphene-hBN—graphene vertical structure as
a function of energy measured from the midpoint between the two graphene layer
Dirac points, TDoS,, i (w, €n,m) Eq. (6.105). We consider rotation angles of 6;z = 1°
and gy = 1.52 at zero magnetic field. The solid red line shows the tunnelling
density of states if the wavefunction overlap factors Tfi {\T’" in Eq. (6.103) are set
to one. A constant broadening factor of v = 2.5 x vpli|Q, m| X 10~3 was used in
all plots.
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with the sum over n, m ranging from 0 to 2. The effective tunnelling probability can
be written as

2
bg,n Antg,
)tg (k+ Qo 7, N | Tigng(w) [k, 7, A>bg‘ = TELTIETS ’ ;}%(w)’ . (6.98)
where we have introduced the graphene wavefunction overlap factors

1 . 2
Ttg/bg,n _ = ’ 1 )\ l(Tek,tg/bg_TLZﬂ-/Ei) ’
k,7,\ 9 + ATE

=1+ 72k - Kig /g (6.99)

with Kyg/tgn = R (n27/3) - Kpg /e, and we introduced the tunnelling amplitude

1 (e )
T0w) = 50 { Tt R - [Glian ()] - B T (6.100)

with the trace being performed over the sublattice degrees of freedom. In the case where
there is an even number of hBN monolayers, R;,, must be replaced as in Eq. (6.82).
Since hBN is a large gap insulator, it is a good approximation to neglect the frequency
dependence of Gféﬁ. In that case and to lowest order in the interlayer hopping, ¢,
we obtain

2 2
4% cos? (% (n—m)) , NV is even

the | tho th oti,c 2 : (6.101)
= T T2 cos (5 (n—m)) , Nis odd
B N

Notice that in Eq. (6.97) both valleys give the same contribution, which can be seen by
making a simultaneous change 7 — —7 and k — —k. The transmission function can
then be written as

3

TV (w) = Agagy >

)

2
T?&?)n‘ TDOSn,m (wbga wtg) (6.102)

n,m=0

where A is the area of the device, g5 = g, = 2 are the spin and valley degeneracies, and
we have defined the tunnelling density of states as

d? k yhenyptem
TDOSn m(wbgy wtg Z / g’ kg“:‘gn mv)‘, X
AN =

XAbg,k,)\(wbg)Agg,k+Qn,m,>\’(wtg)7 (6.103)

which only depends on the graphene’s dispersion relation and wavefunctions (for sim-
plicity we have dropped the valley index 7). An analytic expression for Eq. 6.103 is
provided in Appendix J.

6.5.1 Results

Tunnelling in a graphene-hBN—graphene structure is controlled both by energy-momentum

conservation, encoded in TDoS,, y, (whg, Wtg), and by Pauli’s exclusion principle, encoded
in f(w)— f(w+eVhias). The constrains imposed by energy-momentum conservation can
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Qn m ‘ >
' Qn,m

Figure 6.4: Schematic representation of the constrains imposed by energy-momentum conserva-

tion and Pauli’s exclusion principle on the vertical current. The two cones represent
the electronic dispersion relation for the graphene layers, with the shadowed regions
representing the electronic filling. Energy-momentum conservation is only satisfied
when the two shifted Dirac cones intersect. The dashed arrows represent the energy
windows where this occurs. The following cases are represented: (a) Only intra-
band processes are possible, €, ,, < 1, these are however Pauli blocked or there
are no states available. Therefore in the low temperature limit, no vertical cur-
rent flows. (b) Threshold bias voltage above which intraband processes satisfying
energy-momentum conservation appear in the energy window where tunnelling is
allowed by the electronic occupation factors. (c) Condition which corresponds to
the occurrence of a peak in the current, when ¢, ,, = 1, when both intraband and
interband processes are allowed. (d) If one further increases the bias voltage, only
interband tunnelling, €, ,,, > 1, becomes possible and the current decreases.
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Figure 6.5: I-V curves for vertical current in a graphene-hBN—graphene device with 4 layers
of hBN for rotation angles of #y, = 12 and fppn = 1.59 at gate voltage Vgate = 0,
for two different temperatures. The solid red line indicates the current due to all
the 9 processes coupling both graphene layers, for graphene electrons, while the

dashed black lines represents the total current for scalar electrons (by setting the

wavefunction factors TE‘%{tgm to 1). The remaining lines represent the contributions

to the current arising from processes involving different Q,, ,,, (taking into account
the relations imposed by 3-fold rotational invariance, Eq. 6.84). The dashed vertical
lines labelled by (n, m)* mark the bias voltages when the condition e Foig T €Viias —
€rpg = tuph|Q, | is satisfied. Notice that while for scalar electrons all the
expected peaks in the current are present, for Dirac electrons some of them are
absent. Is is due to the suppression by the TE:{(tg’" factors. (A constant broadening
factor of v = 2.5 meV was used.)
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be understood considering that the Dirac cones of the bottom and top graphene layers
are shifted in energy by a value of €gts + €Viias — €Fpg and in momentum by a value
of |Qp ml, see Fig. 6.4. The intersection of the shifted cones allows us to visualize the
states which respect energy-momentum conservation|53]. Whenever the bias voltage is
tuned such that

€EFtg T €Vbias — €Fbg = toph ‘ Qn,m| ) (6104)

there is a maximum overlap of the Dirac cones and a peak in the current occurs. This
can also be seen in the plot forTDoS,, m(wWhg, wig) as a function of the energy measured
from the midpoint between the Dirac points of the two layers,

TDoS,,m(w, enm) = TDoSy m (w4 enmVrh | Qnm| /2, w —EnmVrh|Qnm| /2), (6.105)

with ey, , defined as
c _ €htg + eVhias — €Fbg
nm = )
vph ‘ Qn,m‘

as shown in Fig. 6.3. For E%’m < 1, the tunnelling is due to intraband processes (from
the conduction /valence band of the bottom graphene into the conduction/valence band
of the top graphene), going to zero in the pristine limit for w? < (vph)? |Qp.m|® /4. For
6721,7” > 1, the tunnelling is due to interband processes (from the conduction/valence
band of the bottom graphene layer to the valence/conduction band of the top graphene
layer), being zero in the pristine limit for w? > (vph)®|Q,.m|* /4. For €2, =1, the
quantity TDoS,, ,,,(w, €n,m) diverges in the pristine limit for any value of w. This di-
vergence in TDoS,, p,(whg, wig) leads to a divergence in the vertical current, which is
made finite with the introduction of a finite electronic lifetime [52, 53|. Since processes
involving different Q,,,,’s correspond to a different effective separation between the
Dirac cones of both graphene layers in reciprocal space, one expects the occurrence of
multiple peaks in the I-V curve, followed by regions of negative differential conductance.
This is indeed the case as shown in Fig. 6.5. According to the discussion of Section 6.4,
from the nine processes coupling the two graphene layers, only three are independent.
Therefore, based only on energy-momentum conservation, one would expect the occur-
rence of three peaks in the I-V curve for positive bias voltage and another three for
negative bias. However, in Fig. 6.5 only two peaks are displayed, with those correspond-
ing to the situations with €91 = +1 and €92 = —1 being absent. The reason for the
suppression of these peaks is due to the spinorial structure of graphene electronic wave-

(6.106)

functions, which is encoded in the overlap factors Ti‘i<tg’n, that appear in Eq. (6.103).
As seen in Fig. 6.3, these overlap factors can severely suppress the value of TDoS,, ,,
close to €,,,, = £1 and, consequently, suppress the height of the peaks in the I-V curve.
The effect of the overlap factors is also represented in Fig. 6.5, where it is also shown
the current that would be obtained if one would set T;g(tg’n = 11in (6.103) (see also
Eq J.23 in Appendix J), displaying the three peaks expected purely by kinematic con-
siderations. Tunnelling processes, which satisfy energy-momentum conservation, can
only contribute to the current if these lie in an energy window between the zero of
energy and the bias voltage, as presented in Fig. 6.4. The condition for which processes
allowed by energy-momentum conservation become allowed by the occupation factors
occurs in the limit of zero temperature when, see Fig. 6.4.(b),

1
€Ftg + eVhias + €Fbg = :tgvph ’Qn,m‘ . (6107)
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Figure 6.6: Density plot of the current (on the left) and of its second derivative with respect
to Vhias (on the right) as a function of Viias and Viate at T = 10 K, for a device
with 4 hBN layers and rotation angles of 6y, = 1° and f,gn = 1.5°. In the current
plot are also shown the lines defined by the conditions: €p g/, = 0, the solid
purple/red line; €p g + €Viias — €pbg = 0P [Qp m| (Eq. (6.104)) for n = 0 and
m = 0, 1, 2, respectively, the blue, green and yellow solid lines; €r g £ €Vijas +
€rbg = TUPM|Qn m| /2 (Eq. (6.107)) for n = 0 and m = 0, 1, 2, the blue, green
and yellow dashed lines. A constant broadening factor of v = 2.5 meV was used.

This explains the occurrence of the plateau with nearly zero current observed at low
temperature in Fig. 6.5, and gives origin to the features in the d*I/ dVbziaS as a function of
applied bias and gate voltages as seen in the density plot of Fig. 6.6 (also highlighted by
the dashed guidelines). At higher temperatures, all these sharp features tend to vanish,
as the Fermi-Dirac occupation factors become smoother functions of the energy.

By applying an in-plane magnetic field, the threefold rotational invariance of the
graphene-hBN—graphene structure is broken, and therefore, the processes correspond-
ing to the different groups in Eq. (6.84) will contribute differently to the current. In
this case, we expect that each peak in the I-V curve, that appeared in the case with no
applied magnetic field, will split into three. An in-plane magnetic field of the form B =
B (cos ¢p,sin ¢p,0) can be described by the vector potential A = Bz (sin ¢, — cos ¢ ).
Neglecting the momentum dependence of Hygn, the effect of the in-plane magnetic field
reduces to an additional transference of momentum to the tunnelling electrons, which
is encoded in a shift in the Q,, ,,, vectors [52, 53, 230-232]

Bd
Qn,m — Qn,m + eT (Sin ¢B, — COS ¢B) . (6108)

The splitting of the peaks with the in-plane magnetic field in the I-V curve is shown
in Fig. 6.7, where it is also shown the effect of an increase in the electronic broadening
factor. It is important to notice that the position of the peaks in the I-V curve is very
sensitive on the relative rotation angles between the graphene layers and the graphene
layers and the hBN slab. This is also clearly shown in Fig. 6.7. As shown, for a
fixed angle of 6y, = 1°, changing f,pn from 1.5° to 3° moves the peaks that involve
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transference of momentum by the hBN crystalline structure (with n # m) from a bias
voltage of ~ 1 V to bias voltages 2 1.5 V .

Finally, we comment on the possible effect of the hBN in the electronic structure
of graphene. Due to generalized umklapp processes, the crystal momentum of an
electron in a graphene layer that is in contact with an hBN layer is no longer con-
served. If as before we consider only processes involving reciprocal lattice vectors
of smallest length, than graphene states that are connect by vectors given by g]f%

(Egs. (6.74) and (6.75)), for the bottom graphene layer, or gig/;Q ((6.80) and (6.81)),
for the top graphene layer, will couple to each other. In a nearly free electron model,

this means that states with energies of the order of fvgph ’ g}f%tg‘ /2 (with g?%tg ~

477\/ 62 + (Bhg Jtg — QhBN)2/ (v/3ag) for small rotation angles and lattice mismatch) will
have a strong reconstruction of the spectrum [196-201]. These effects would modify
the terms Hyg (Eq. (6.61)) and Hyg (Eq. (6.60)) in the Hamiltonian of Eq. (6.59). We
have disregarded such reconstruction effects in our model. As we have seen in Fig. 6.7,
the additional peaks in the current enabled by the transference of momentum by the
hBN lattice, only appear for reasonable values of the bias voltage for small twist an-
gles between the graphene layers and hBN slab. It is precisely in this case that the
spectrum reconstruction of the graphene becomes important at low energy. The effect
of this reconstruction should impact not only the peaks that involve transference of
momentum by the hBN lattice (n # m), but also the ones that do not (n = m). In this
situation one can question the validity of neglecting reconstruction effects. However,
we argue that the possible reconstruction of the graphene dispersion relation should
not affect in a profound way the occurrence of peaks and NDC in the I-V curves of
graphene-hBN—graphene devices. The energy width, A, where the reconstruction of
the linear dispersion relation of graphene is significant is of the order of the tens or
in the worst case a few hundreds of meV [197, 233|, while the total energy window of
states that contribute to the current is, at low temperatures, of the width of ~ eVjjas.
Provided the condition eVi;as > A is satisfied (see Fig. 6.8), we expect that the effect
of the graphene dispersion relation reconstruction will be negligible, and apart from
a possible reduction of the height of the peaks, should not affect the current in any
drastic way.

6.6 EFFECT OF SCATTERING
6.6.1 Disorder scattering in the graphene layers

The effect of disorder in the vertical current of a graphene-hBN—graphene device can be
simply studied by performing disorder averages of the Landauer formula Eq. (6.29) (an
alternative approach where the disorder averaging is treated as an effective interaction
is done in the next subsection). Considering only disorder in the graphene layers and
assuming that disorder does not establish any correlations between the two graphene
layers or between the graphene layers and the hBN slab, the disorder averaged current
is given by

1550 = e [ 52 () = o)) T [ @) Tufw) - G )

Tigbg(w) - Gpy (@) - Th(w) - G (w) 'Tbg,tg(w)] . (6.109)
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Figure 6.7: I-V curves at Vgate = 0 and T' = 300 K in a graphene-hBN-graphene device with 4
layers of hBN. (Left) For different values and orientation of the in-plane magnetic
field and electronic broadening factor and fixed 6y, = 1° and O,y = 1.5°. The
vertical lines, labelled by (n,m)*, mark the bias voltages for which En,m = EL.
Notice how the applied magnetic field leads to a splitting of the peaks that occur
at zero magnetic field. As the broadening factor is increased, the peaks become
less resolved. (Right) For different rotation angles between the top and bottom
graphene layers, and the hBN slab and the bottom graphene layer. The black
dashed line marks the bias voltage when €y o = £1 (a condition that is independent
of Ohpn). The remaining vertical lines mark the bias voltages when ¢, ,, = %1 for
n # m for different values O,pN (the colour and type of line match the ones used
in the plots). A value of v/, = 2.5 meV was used.
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Figure 6.8: Diagram representing the regions with possible reconstruction of the graphene Dirac
spectrum due to the presence of hBN, when €, ,, = £1. The red bars represent
the position in energy of the regions, with width A, where graphene’s spectrum is
significantly reconstructed.

where the bar represents disordered averaging. Notice that before performing the disor-
der averaging we have that by Eqgs. (6.22) and (6.24) G?éA(w)-I‘t (w)- G?éR(w) = A, (w)
and G’g’gR(w) Tp(w) - Gggl (w) = Agg(w) even in the presence of a disorder potential in
the graphene layers. Therefore, under the previous considerations, the vertical current
in the presence of disorder in the graphene layers is just given by

27

e — / o Fw) = Flw + Vi) x

X Tr | A% (@) - Tigng(e) - AQy(w) - Togaglw)| . (6110)

where A?g /bg(w) are the disorder averaged spectral functions, which can be obtained
from Agg /bg(w) =1 (ngbg(w) - ng;lbg(w)) This is the result that would be immedi-

ately obtained if we treated the disordered graphene layers as forming the electrodes.

The previous result can also be obtained without using Egs. (6.22) and (6.24), but
performing instead the average of the product of Green’s functions that appears in
Eq. (6.109). This approach will be more convoluted, but will provide guidance for
when we turn or attention to the case of scattering by graphene phonons, when the
current is given by a sum of the Landauer formula, Eq. (6.29), and incoherent processes,
Eq. (6.31). In the presence of disorder, the average of the product of two Green’s
functions is not just the product of the averages, as correlations are established between
the two quantities by the averaging process. Employing a notation where in-coming
particles are represented by a lower index and out-going particles are described by an
upper index, see also Appendix H, the average of the product of an advanced and
retarded Green’s function can be expressed as

[GOA]*, TP, [GRO]%, = [GO’A} ab Fbc [W} Cd +
+ 60" Ay (65

dl

ve b [GO’R} L+ (6111)

bc
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Figure 6.9: Diagrammatic representation of the Bethe-Salpeter equation, Eq. (6.113), in the
T-matrix an non-crossing approximations.

where the equation is valid for both the top and bottom graphene layer and all quantities
are evaluated at the same frequency and for that reason we drop the frequency argument
and the layer index. In the previous equation the first term is just the product of the
average and the second term includes the corrections to this: vertex corrections. We
introduced a c
AR ¢ _ |70,A GO.R

[G2]bd—{Gv]b[Gv}d, (6.112)
and introduced the 4-point function A%, which obeys a Bethe-Salpeter equation (see
Fig. (6.9))

v d /

Aabcd — Uabcd + abcd, [G?R} S Uab’cdv (6.113)

a

where U%¢; is an irreducible 4-point vertex. In order to make progress we will focus on
the case of resonant impurities, such as vacancies, which we model as a §-like potential
of strength u and diagonal in the sublattice degrees of freedom. We focus on this kind
of impurities for the possibility of analytical progress and due to the fact that this
impurity model correctly predicts a graphene transport lifetime that is proportional to
the Fermi energy, 7, < ep [174].

Short range disorder can give rise to resonances, which are not captured when treating
disorder correlations within a Gaussian approximation [234|. A way to overcome this
is to employ the T-matrix approximation, which, in the low impurity concentration,
correctly describes multiple scattering events evolving the same impurity. In order
to solve the Bethe-Salpeter equation, we must first compute the impurity averaged
Green’s functions. Using the T-matrix approximation for resonant impurities, within
the non-crossing or self-consistent Born approximation, the Dyson equation for the
Green’s functions (in a sublattice and Bloch basis) for a graphene layer (disconnected
from hBN) reads

G (w) = G (W) + G (W) Bepaw) - G (W), (6.114)

where the matrices here have indices in the sublattice space, G?(’R(w) is the disorder
free Green’s function and the self-energy due to resonant impurities is momentum
independent and is given by
R R

28 (@) = nimp T (@)1 (6.115)
In this expression, nimp is the impurity concentration (number of impurities per unit
cell), I the identity in sublattice basis and

U 1

TR (W)= ——— = ———, 6.116)
? 1= uGl(w) 7> Gf(w) (
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where we have taken the limit © — oo in order to describe vacancies and defined @(w)
as the on-site Green’s function of sublattice A (or B)

& - [ 25 [arw]”, (6.117)

In the Dirac cone approximation, we have

a 5% + Ak - 0
GV w)| = b T T b , (6.118)
- } b A—Zﬂ:l w — Avph K[ +ive — E§CBA(W)

with ¢ and b indices running over the A and B sublattice sites, 7,is the lifetime induced
by the metallic contact (¢ =tg/bg). Splitting the self-energy in real and imaginary parts
Zﬁlp(w) = Yimp(w) — iimp(w) and using the fact that it is momentum independent,
the integration in Eq. (6.117) can be performed analytic leading to

@(w) _ g1 (w - Eimp(w)v ’Yimp(w) + 7@)

A (vph)?
- Eim 5 /im
47 (Uph)
where the functions g; and g9 are given by
w (Ag —w)® + n?
gl(wv 17) _5 llog ( w2 + 772 + (w - —CU)

tw [arctan <AEU_“’> + arctan (‘;) W —w)} (6.121)

with A ~ vph (47T/ (\/gaé))l/2 a high energy cutoff. In terms of ¢g; and go the self-
energy is given by

g1 (w/>'7/)
Simp(w) = —47 (vph)? n; , 6.122
() W) iy 27 + 8 ) (0122
g2 (w/’,-)/)
imp(w) = 47 (vph)? n; . 6.123
T () = 4T () iy )+ B @) (0129

where we have writtenw’ = w — Bimp(w), v = 72 + Yimp(w). Equations (6.120)-(6.123)
form system of equations that can be easily solved numerically. The solution for self-
energy is shown in Fig. 6.10.

We are now in a position to solve Eq. (6.113). Within the SCBA and T-matrix ap-
proximations, the 4-point irreducible vertex U% ¢, for resonant impurities is momentum
independent and given in the sublattice basis by

a Cc 2 a (6
U°% 3 = nimp | Tiep (@) |~ 6%0°- (6.124)
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Figure 6.10: Real and (minus) imaginary parts of the retarded self-energy for graphene electrons
due to resonant impurities treated within the SCBA, for two different impurity
concentrations (number of impurities per graphene unit cell).

The quantity [G’QL‘R] abc 4 1s also momentum independent and given by

0371 = [ e ), 68T, 6120

The integration over momentum can be perform analytically, yielding

a Cc 1
[sz‘\R] b g = Ly (W/,’)//) 598 + Ly (w/’,y/) 5a_ab o°, (6.126)
where
Ly (w,n) ! (1 wrm) + g >> (6.127)
U), = NG ) — (U, —_ (.U, , .
1w 7 87 (vrh)? ?7g2 n+ oW
Lo(wn) = 1(1 ) - Lo >) (6.128)
2 7n 87T (th)Q ?792 777 U.)gl 777 . .

The Bethe-Salpeter equation for A%, is now a simple problem of linear algebra. Solving
Eq. (6.113), yields the non-zero components of A%, in the sublattice basis (omitting
frequency arguments)

Ay =0 P

Nimp ‘TRF (1 — L1imp ‘TRf)

= - — (6.129)
|1 (L1 = Lo) i [TP] [1 = (L1 + L) mimy I TR
AABBA :ABAAB
Lon2, |TR|
_ 2 ‘;“P| | =, (6.130)
1= (L1 = Lo) i [TP] [1 = (L1 + L) mimy I TR
. TR 2
AA B =AB A, = imp |T"| . (6.131)
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Using the fact that [G4F] Yoo (L1 (w) + La(w)) 6%, the vertex correction contribu-

b cl

tion in Eq. (6.111) can be written as

A / Nim TR 2 L + L
A [Gg‘R]b b= |77 (L1 2; 50%, (6.132)
1-— (Ll + L2) Nimp |T ‘

Expressing T and L, /2 in terms of g1 and go, and using Eqgs. (6.123) it can be seen
that the quantity (L1 + L2) nimp |TR‘2 can be written as the ratio

2 “imp
L1+ Lo) nye | TH]” = — 222 6.133
( 1 2) 1mp} ‘ ’Yimp‘i"}’é ( )

Therefore, using the fact that I'*, = 6% ,/2, Eq. (6.111) can be written as

E[GO,A}G [GR,OT) _ % [GO,A}a GEO|P e imp [~0.A]% [R0)
kakd2kbkd+2’ygkbkd
X a b
_ Jo ¥ Yimp +27‘mp N (6.134)

If we now use Eqs. (6.22)-(6.24) we recover Eq. (6.110). It seems that we went through
a lot of work to obtain a trivial result. However, we will see in the next section that
vertical current in the presence of phonon scattering in the graphene layers, under the
same assumptions that interactions do not establish correlations between the graphene
layers and the hBN slab, is also described by an equation of the form of Eq. (6.110).
This is obtained by summing an infinite series of vertex corrections just as for the
solution of the Bethe-Salpeter equation within the SCBA.

6.6.2 Phonon scattering in the graphene layers

We now turn our attention to the effect of scattering by graphene phonons in the
vertical current. We will first only consider scattering in the bottom graphene layer,
but scattering in the top layer can be treated in the same way. Using Eq. (6.43) and
Egs. (6.88)-(6.91), the n-phonon assisted transmission function can be written to lowest
order in the graphene-hBN coupling as

7;53)(817C1),...,(Sn,4n)(w) ~ Tr Tbg,tg((JJ) . GSéA(w) . Ft(&)) . G?éR(W) ) ﬂg7bg(w)-
' G%gR(w) - Mg, - GgéR(w — 51wy ) e s M, -

n

. Ggf(w — s1w¢ — Spwe,) - Th(w — s1we — spwe, ) - Ggg‘(w — S1W¢ — SpWe, )

0,A 0,A
M GYMw - siwg) - ML G (w)] . (6.135)

where the © index means only that the graphene functions do not include effects of the
coupling to the hBN slab, but include electron-phonon scattering effects. In the follow-
ing we will drop this index. For now, we are ignoring the electron-phonon interaction
in the top graphene layer, and therefore we can write Apg(w) = Gé’.(w) T (w)- G@(w).
Using the fact that the equilibrium occupation factors satisfy the identity

1— flw—sQ) flw—s82)

1—f(w) fw)
=s5(1— f(w—sQ)+b(s)), (6.136)

[—sb(—sQ)] = sb(sQ?)
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the occupation factors Wt(g)(sl’ﬁ)’“"(s"’cn)(w), Eq. (6.44), can be written in a recursive
form as

Wt(f];)(sl7(1)7“'7(37’“4”) (UJ) — Wéz_l)(sl7(1)"")(sn*17<n*1) (CU) X

(1 - fb(w — S1W¢y - — Sann))
(1= folw — 5100 — Sn100,

D) (—snb(—spwe,)), (6.137)
with
W w) = flw) (1~ folw)) — (1~ filw)) folw)
= fe(w) — fo(w). (6.138)

Using the phonon assisted transmission function given by Eq. (6.135) and the above
recurrence relation for the occupation factors, the sum of all the incoherent contribu-
tions due to electron-phonon interaction in the bottom graphene layer to the current
with the the contribution due to the coherent transmission function given by Eq. (6.92),
allows us to write the total current as

Tisp = ;Z/;&; (fo(w) = fi (w)) x
n=0
x Tr [Atg(w) - Tigpg(w) - Al(o? (W) - Tgtg(w) |, (6.139)

where the different factors A,Eg) (w) obey the recursion relation

AP () = G (w) - Th(w) - Gily(w), (6.140)
Al(;;)(w) _ (1 —(J;bEWf;(Zr;‘;)CnD (—nb(—s$ntwe,)) X

x GE(w) - My, - ANV (w — snwe,) - M - Gil(w), n > 0. (6.141)

This can be compared with the spectral function of the bottom graphene layer. Taking
into account the coupling of the bottom graphene layer to the bottom electrode and
the electron-phonon interaction, the spectral function for the bottom graphene layer
can be written as (Eq. (6.22))

Apg(w) = Gig(w) - (Tp(w) + Tint (W) - Gig(w), (6.142)

where Ty (w) is the decay rate due to the electron-phonon interaction. Assuming that
the bottom graphene is in equilibrium with the bottom electrode, we can write

Gry(w) = i fiy(w) Apg(w), (6.143)
Gry(w) = =i (1 — fi(w)) Apg(w). (6.144)

Using this approximation, together with Eqgs. (6.23) and (6.36), the decay rate due to
the electron phonon interaction can be written as

Tine(w) = > s (1= folw — swe) + b(swe)) M - Agg(w — swe) - M. (6.145)
S?C
Inserting Eq. (6.145) into Eq. (6.142) and using the relation Eq. (6.136), we see that

Apg(w) can be written as

Apg(w) =AY (w). (6.146)
n=0
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This argumentation can be repeated for scattering in the top graphene layer. There-
fore, the total vertical current tacking into account electron-phonon interactions in the
graphene layers is given by

fon =5 [ 52 (le) = £ @) %
X Tr[Agg(w) - Tigpg(w) - Apg(w) - Thg,tg(w)], (6.147)

provided the graphene spectral functions include the effects of the electron-phonon
interaction. This is the same result that would be obtained if the graphene lay-
ers were treated as electrodes, being in thermal equilibrium. To lowest order in the
graphene-hBN coupling, Eq. (6.147) includes all the possible electron-phonon scattering
processes occurring in the graphene layers. To higher order in the graphene-hBN cou-
pling, Eq. (6.147) no longer includes all the possible contributions due to the electron-
phonon interaction in graphene, but only sums a subset of diagrams. As can be seen in
Fig. 6.11 diagrams where a graphene phonon propagator hopes over an hBN propagator
are not included in Eq. (6.147). If we go back to the original derivation of the Meir-
Wingreen formula in Section 6.2, we see that the electrodes can also be interacting,
provided contributions where an interaction line hops over the electrode—mesoscopic
region coupling are neglected. As such it is not surprising that we reobtain (6.147),
since we did the exact same approximation. However, we have learned a very impor-
tant lesson: Eq. (6.147) includes a subclass of tunnelling processes which are assisted
by the emission or absorption of real graphene phonons. This fact would not be clear
if we had treated the graphene layers as electrodes.

In order to study the effect scattering of graphene electrons close to the K point by
in-plane longitudinal and transverse optical phonons close to the I' point and electrons
close to the K point, we assume that the lattice distortions lead to a local modulation
of the hopping integrals in a tight binding description of graphene [141]|. The approach
is similar to the one employed in Section 4.3 for the case of scattering by acoustic
phonons. In the case of optical phonons, the displacement of the atoms is no longer
smooth at the atomic scale and therefore the difference in the atomic displacements
that occurs in change in bond length A/ (RQL, RY + 76)7 see Eq. (4.55),

AL(RY, R+ 1) = /(o + 5 (R + 7.) — a (RY))? — ||, (6.148)

cannot be approximated by derivative. Instead we write the change in bond length as

AL (RS, RO +7,) ~ ﬁ [@ (R +7.) — i (R})]
Z (RS +7c/2) ‘:C| . [ iq- 7'c/2u B— —iaTe/2 Ai| (6.149)
a C

The displacement fields due to optical motion of the atoms can be written in terms of

creation, al

ac and annihilation, a_q ¢, operators as

Ug,a/B = Z

¢=LO,TO

£S5 g 6.150
wq ¢MA/B q,A/B q,¢ ( )

-

where wgq ¢ is the phonon frequency, f(i A/B is a polarization vector, my pis the mass

of the A/B atom (both carbon atoms in graphene) and ¢q ¢ = (aiqc + aqjg) is the
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Figure 6.11: Diagrammatic representation of the effect of scattering to the current. The dots
represent the level width functions due to the bottom and top external metallic
electrodes, the squares represent the graphene-hBN coupling, solid and dashed
lines represent, respectivelly, graphene and hBN electron propagators and wig-
gly lines represent phonon propagators. (a) Lowest order contribution in the
graphene-hBN coupling to the elastic current. (b) Contribution to lowest order
in the graphene—-hBN coupling, involving multiple emission of phonons in the
graphene layers. These ladder diagrams are resumed by Eq. (6.147). (¢) Diagram
contributing to the current in higher order in the graphene-hBN coupling, includ-
ing the renormalization of the top graphene layer Green’s function by phonons.
This kind of diagram can be captured in Eq. (6.147), provided the effect of coupling
to the graphene layers is included into Gpn. (d) Higher order diagrams in the
graphene-hBN coupling, including electron—phonon interaction in the graphene
layers, which cannot be captured by Eq. (6.147).
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phonon field operator. Focusing in phonon states close to the I' point, we approximate
eF7e/2 ~ 1 in the factor between brackets of Eq. (6.149), and further approximate the
phonons as dispersionless wq ¢ =~ wo,¢c. At the I' point, the longitudinal and transverse
optical phonons of graphene (a non-polar material) are degenerate and we thus write
Wo,LO = W0, TO = wgro. The polarization vectors close to I' are given by

ZLO/TO _ [HAB ~LO/TO _ HAB
Sar Al SqB e L (6.151)

where €|/ 4 is a unit vector parallel /perpendicular to q and u;llg = mgl + mgl is

the reduced mass of the optical mode. With these approximations, the electron-optical
phonon interaction Hamiltonian for graphene is given by

1
Hephg = —= ¢1T< Mg Prgha (6.152)
\/]Vg Zq +aq,g

¢=LO,TO

with the electron-phonon couplings given by

Mgro = —9700y,  Mgr0 = 97004, (6.153)

Ologt t h
S0 =— i/ 6.154
910 dlogacc acc \| 2ugwiy’ ( )

with —0logt/0logacc ~ 3 (according to Harrison’s argument [153, 154]) describing
the change in the nearest neighbour hopping with the carbon-carbon distance acc ,
fe = mc/2 is the reduced mass of the graphene optical mode, and wrgro is the frequency
of the optical longitudinal /transverse phonon mode. Assuming that the top/bottom
graphene layer is in equilibrium with the top/bottom electrode and to lowest order in
the electron-phonon interaction, the retarded electronic self-energy is given by

d2k 1+b sw ) — f(ek)\—eF)
TR _ E : TO 1
ph(2) = Acon gTO / w — ek ) — swho + 10T (6.155)
A,s==£1

with

being momentum independent for dispersionless phonons and diagonal in the graphene
sublattice basis. For pristine graphene, the imaginary part of the self-energy can be
computed analytically yielding

Imth(w) = —mAcenl (grgpo)2 X
w + swh
< 3 [insio) = o s —en)] 28l (o

with w and the Fermi energy, er, both measured from the Dirac point. The real part
of the self-energy can be efficiently obtained using the Kramers-Kronig relation

(6.157)

™ 1%

Im¥E (w—v) — Im2E (w+ v

The computed self-energy is shown in Fig. 6.12.
Finally, we point out that the discussion from this section (and more generically the
discussion regarding the incoherent current in Section 6.2.1) provided an alternative
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Figure 6.12: Real and (minus) imaginary parts of the self-energy for graphene electrons due to
scattering by in-plane optical phonons for two different temperatures for doped
graphene with ep = 0.3 eV. The zero of energy corresponds to the Dirac point.
The dashed vertical line marks w = er and the dotted lines mark w = ep + wh .

approach for the treatment of disorder in the device to the one done in Section 6.6.1.
The effect of disorder can be obtained by setting the phonon frequency to zero, we — 0,
dropping the summation over s (emission or absorption) and interpreting M¢M, g as the
disorder correlator. The comparison of the approach of this section, with the approach
of Section 6.6.1 also justifies our earlier interpretation of the incoherent contribution
to the current as vertex correction.

6.6.3 Phonon scattering in the hBN slab

Now we focus on the effect of scattering by phonons in the hBN slab. We will restrict
ourselves to the case of tunnelling assisted by a single phonon. Tunnelling assisted by
multiple phonons can be included as discussed in Section 6.2.1. Writing the electron-
phonon interaction in the hBN slab as

He phhpN = E Y ¢ Yk hBNOq.Cs (6.158)
e-p NhBquC k+q,hBN M, q,¢
where
T I DA | T T T
Yy hBN = [¢k,B1,hBN’ Vi N1LRBNY > Vi BAL BN Yk NACHBN

g, = (ai ac + aq74> is the phonon field operator and N,y is the number of unit cells

in the hBN slab. As previously, we focus on the case when the rotation angles between
the different layers are small and we only consider scattering by phonons close to the I
point of hBN, such that only states close to the Dirac points of each layer are involved.
According to Eq. (6.42) the contribution to the current assisted by one hBN phonon
can be written to lowest order in the graphene-hBN coupling as

(incoh,1) (1 s( (s,(
It—>b o hNhBN Z Z W ‘ n,m,k 701 ‘ x
kAN q
7’L m
b
x T nTE_an m—d, v Abg k—q (Wb — 5we) Atg ket @, N (Wig)  (6.159)
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where, similarly to Eq. (6.100), we have introduced the phonon assisted tunnelling
amplitude as

n7m7k7q

S 1 r
g ’O(w) = §tr {TT . Rszl-
3

R R n o
' [GhBN,kJrgEg (w) - Mgy - GhBN,kJrglng*q(w — sw) N1 R%” ' T} - (6.160)

)

Neglecting the momentum and frequency dependence of GﬁBN and assuming disper-
sionless optical phonons, one can make a shift in the momentum variable q — k — k/,
such that the summation over k and k’ factorizes and we can write

inco d
It(—>b h1) _ AAcellgsgv% Z / %{fb(w — swe) [1 = fo(w)] sb(swe)
Cs
— ful) [1 = folw = swe)] s[1+ blswe)] | x
X ’971(1%’2 DoShg (whg — swe)DoStg(wig), (6.161)

where Agep is the area of the unit cell of hBN. In Eq. (6.161) for s = £1 the first term
corresponds to a process involving the absorption/emission of a phonon while the second
term corresponds to a process involving the emission/absorption of a phonon. A similar
expression to Eq. (6.161), which treated the phonons as being at zero temperature and
therefore only includes processes corresponding to the spontaneous emission of phonons,
has also been presented (without derivation) in Ref. [210] and used to model vertical
current in graphene-hBN—graphene devices.

The exact form of 1771(}7)1 will depend on the actual electron-phonon couplings Mg ¢
in Eq. (6.158). As an example we consider scattering by optical out-of-plane breathing
modes (ZB) close to the I' point, with non-zero components of polarization vector, EZB
given by

€ZB,a€ = (§§7B1’ €Z7N1 ’ngQvgg,NQv )

_ /BBN < 1 1 -1 -1 ) (6.162)
N \ymp’ ymx’ m’ mx’ )’ '

where /@I{I = mgl + mlgl is the reduced mass of the hBN phonon mode. We model the
electron-phonon coupling for this mode in terms of a local change in the value of the
interlayer hoping parameter, ¢, in Hamiltonian (6.63). Considering electrons close to
the K point and phonons close to the I' point, the derivation of the electron-phonon
Hamiltonian follows the same steps as the discussion in the previous section. The
obtained electron-phonon Hamiltonian can be written in the form of Eq. (6.158), with
a momentum independent coupling constant which reads

0 o
hBN _
Mgy = 95 | 70 0 T (6.163)
vN —-o, 0 .
with the quantity g%EN given by
0 log t 1 t 1 h
hBN
978 = — BN (6.164)

~ 9log cpN BN 2uBNW,R
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where cgy is the distance between consecutive hBN monolayers and wlzlgN is the out-

of-plane breathing phonon frequency and, according to Harrison’s argument [153, 154],

—0logt, /0logcpn ~ 3. For this electron-phonon interaction and for an even number

of hBN monolayers, we obtain to lowest order in ¢, and neglecting the frequency and

momentum dependence of the hBN Green’s functions

Bl
i1

: (6.165)

n,m

‘2 N —1)?

|79 ==

with ’%(%‘2 given by Eq. (6.101).

We note in passing that, as we commented in Section (6.6.2), the elastic limit, we — 0,
of Eq. (6.161) can also describe the effect of disorder. In the same way as dispersionless
phonons, short range disorder also leads to a complete degradation of momentum con-
servation. Therefore, in the case of elastic scattering by short range disorder, Eq. (6.161)
becomes,

incoh,1-disorder (& dw
It(—>b - ) = AAcellgsgvﬁ E /27T [fo(w) = fi(w)] x
G,s

‘ 9(1 disorder)

DoSbg(wbg)DoStg(wtg), (6.166)
with Q%L(ﬁﬁdisorder) a disorder assisted tunnelling amplitude. Although an expression of

the form of Eq. (6.166) was previously used to model vertical current in graphene-hBN—graphene
devices |48, 49], we emphasize that Eq. (6.166) only describes processes where there is a
complete degradation of in-plane momentum conservation. The complete degradation

of momentum conservation only occurs for scattering by dispersionless phonons or for
disorder with short distance correlation.

6.6.4 Results

We first study the effect of disorder and electron-phonon interaction in the graphene
layers. In Fig. 6.13 we show the vertical current as a function of bias voltage tak-
ing into account the effect of scattering of graphene electrons by resonant impurities
and graphene in-plane optical phonons, computed using Eq. (6.147) with the spectral
functions of the top and bottom graphene layers including the effects of disorder and
phonon scattering. For comparison, we also show the current computed using a con-
stant relaxation time. The main difference between modelling electron scattering with
a constant relaxation rate or considering scattering by resonant scatterers is that for
resonant scatterers the electron decay rate has a strong dependence in energy, behaving
as w™!. Therefore, for higher bias voltages (when the graphene Fermi levels are higher),
the electron lifetime is larger. This is manifested in Fig. 6.13, where it is seen that with
a constant relaxation rate the second peak in the -V current is considerably smaller
than the first one, while for resonant scatterers both peaks are roughly the same height.
Inclusion of phonon scattering makes the peak at higher bias voltage smaller again,
since the decay rate due to scattering by graphene in-plane optical phonons increases
with frequency. We also notice that inclusion of resonant disorder and phonons leads
to a small splitting of the peaks in the I-V current. This splitting is due to the real
part of the self-energy due to resonant scatterers and phonons. Apart from increasing
graphene electron’s decay rate, providing an additional broadening of peaks in the I-V
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Figure 6.13: I-V curves at constant Vgate = 0 in a graphene-hBN-graphene device with rota-
tions angles ¢, = 1° and 6,pn = 1.5°, considering different sources of scattering in
the graphene layers: (RT) constant relaxation time of v = 3 meV; (Imp) scattering
by resonant scatterers treated within the SCBA with an impurity concentration of
Nimp = 10~* impurities per graphene unit cell; (Imp-+RT) scattering by resonant
scatterers and graphene in-plane optical phonons also with njy,, = 1074,
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current, phonons do not play a relevant role for the high bias I-V characteristics of a
graphene-hBN—graphene device. This changes if one focus on small biases.

At very low temperature, the spontaneous emission of optical phonons becomes pos-
sible whenever eVias > woph, Where woph is the optical phonon frequency, opening up
new tunnelling channels for electrons. Although for small electron-phonon coupling this
phonon assisted contribution to the current is small, the opening up of a new tunnelling
channel can be observed in the derivatives of the current with respect to the bias, as
can be seen in Fig. 6.14, which is computed summing the contribution of processes
involving the emission of hBN breathing phonons, Eq. (6.161), with the coherent con-
tribution to the current and processes involving the emission of real graphene phonons,
which are both captured by Eq. (6.147). The features in d*I/dV;2,, are only significant
at low temperature, being smoothed out at higher temperatures due to the smearing
of the graphene Fermi occupation factors. We point out however, that the features due
to phonons are a small effect that can be overridden due to features in the coherent
current induced by the small rotation between different layers (shown in Fig. 6.6), even
if we treat the phonons as dispersionless leading to a complete degradation of electron
momentum conservation. In Fig. 6.14 only processes assisted by the emission of a single
phonon where considered. Tunnelling assisted by the emission of more phonons could
be included by computing the graphene self-energy due to phonons, Eq. (6.155), to
higher order in the electron-phonon interaction and including more terms of the form
of Eq. (6.42) due to the electron-phonon interaction in the hBN slab. Tunnelling as-
sisted by multiple phonons would open up new scattering channels when nwopn > Vpias,
where n is the number of emitted phonons. These new channels would manifest them-
selves as additional peaks in d?I/ alV]DQias at low temperature, but would be suppressed
by higher powers of the electron-phonon coupling.

6.7 CONCLUSIONS

In this chapter, we have studied the vertical current-voltage characteristics in vdW
structures. In vdW structures, the atomically sharp nature of the interfaces between the
different layers makes momentum conservation rules essential to understand their elec-
tronic properties, which will depend sensitively on the lattice mismatch and misalign-
ment between different layers. This additional degree of freedom can be exploited to
control the properties of the structures. We have focused on graphene-hBN—graphene
structures and on how small crystallographic misalignment between the different lay-
ers of this structure affect its I-V characteristics. The misalignment between the two
graphene layers leads to an effective shift in the Dirac cones of the two graphene lay-
ers in momentum space. This momentum shift in conjunction with a energy shift of
the Dirac cones, due to applied gate voltages, can lead to the occurrence of peaks in
the I-V characteristics, which are followed by regions displaying NDC [52, 53]. We
have seen how the transference of momentum by the hBN crystalline structure to the
tunnelling electrons gives origin to additional peaks in the I-V characteristics of this
device, and therefore to multiple regions displaying NDC. These additional peaks are
however extremely sensitive to the rotation angle between the graphene layers and the
hBN slab, and rotational angles as small as 3° can already push these additional peaks
to bias voltages higher than 1.5 V. Therefore, the observation of multiple NDC in
graphene-hBN—graphene devices requires a control of the rotational angle between the
different layers with a precision of < 1°, something which is within experimental reach
[52, 201, 237]. We point out that the development of devices displaying multiple NDC
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Figure 6.14: I-V curve and d?7 / dVbQiaLS as a function of bias voltages at a constant Vgae = 10 V
for different temperatures and for rotation angles 6y, = 2° and f,pn = 3°, includ-
ing effects of scattering by out-of-plane breathing phonons of hBN, wiBN = 15
meV[235], and of the in-plane graphene phonons, wfy, = 196 meV|[236] (repre-
sented by the vertical dashed lines). Processes involving spontaneous emission of
phonons open up new tunnelling channels that appear as peaks in d*I/dV;Z, at
low temperature. The inset zooms in the small peak due to the hBN out-of-planes
breathing phonon. We point out that the feature that occurs around Viias ~ 0.1
V is not due to phonons, but due to the tunnelling density of states structure.
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regions is relevant for the development of multivalued logic devices [238, 239|, which
might be a possible future application of vdW structures.

On a more theoretical level, we have also analysed the effect of treating graphene
as being the source and drain electrodes of the graphene-hBN—graphene device, or by
treating them as part of the device and taking the source and drain electrodes to be
the external metallic contacts. We have seen that, provided the metallic contacts do
not significantly spoil translation invariance of graphene (as expected if the contact is
deposited only over a small region of the graphene layer) and in the non-interacting
case, both approaches are equivalent. In the presence of interactions both approaches
are equivalent to lowest order in the graphene—-hBN coupling.

Finally, we have studied, in a unified way, the effect of electronic scattering by disor-
der and phonons in the vertical current of graphene-hBN—graphene devices. Starting
from a NEGF formalism we derived the contribution to the current due to phonon (or
disorder) assisted tunnelling processes. We have seen now scattering by short range
disorder or dispersionless phonons leads to a complete degradation of electron momen-
tum conservation in the graphene-to-graphene tunnelling process. We have also seen
how spontaneous emission of phonons at lower temperatures manifests itself as sharp
features in the derivatives of the current with respect to the bias at bias voltage corre-
sponding to the energy of the phonons. This signature of the phonon-assisted tunnelling
can, however, be hidden by features due to the rotational alignment between the differ-
ent layers. We have focused on the effect of graphene in-plane optical phonons and hBN
optical out-of-plane breathing phonons. We have not considered the effect of vibrations
at the graphene—hBN interface, as these would require the description of phonons in
incommensurate structures, something which will be the focus of future work.

As a side note, we expect that the possible reconstruction of graphene spectrum due
to the periodic potential induced by hBN for small rotational angles should not affect in
a qualitative way the occurrence of multiple NDC regions in graphene-hBN-graphene
devices, provided the applied bias voltage is much larger than the width of the re-
gion where the spectrum reconstruction is significant. However, a more quantitative
treatment of these effects is required in the future.
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CONCLUSIONS

In this thesis we have studied the mechanical and electronic properties of 2D crystals.
We have seen that while some of these properties are universal, others can be sample
dependent.

In Chapter 2, we have studied anharmonic effects in free crystalline membranes in
the low temperature, quantum limit. To do so we quantized the classical theory of
thin plates. We have shown that anharmonic effects lead to a reconstruction of the
flexural phonon dispersion relation, changing it from o |q|® to o |q|> /2. Performing
a perturbative calculation and a partial self-consistent calculation we obtained a value
of np, = 2. We found out that the thermal expansion of a free membrane, which is
negative, is made finite by anharmonic effects, behaving in the low temperature limit
as aq o< —T2m/(4=m) We have also seen that the specific heat due to flexural phonons
is also affected by anharmonic effects and that in the low temperature limit it depends
on temperature as c](f)ut) oc T4/ (A=),

We have seen in Chapter 3 that the situation changes radically when the crystalline
membrane is supported by a substrate. In this situation, the physics is no longer
dominated by anharmonic effects, but instead by the coupling of the membrane to the
substrate. By using a simple spring model to describe the coupling of the membrane to
the substrate, we have seen that the coupling to the substrate leads to the opening of a
gap in flexural phonon dispersion relation. This gaped mode couples to the substrate
bulk continuum of acoustic phonons, which act as a dissipative bath, giving origin to a
finite lifetime for the gapped flexural phonon. At the same time, the flexural phonon will
also partially hybridize with the substrate surface Rayleigh mode. We have compared
these predictions with HREELS measurements of graphene phonon dispersion relations
on different transition metal carbides. Then we studied how coupling to the substrate
makes the thermal expansion of the membrane finite, while remaining negative. For a
substrate supported membrane, the thermal expansion of the membrane is no longer
an intrinsic property of the 2D crystal, but becomes substrate dependent.

In Chapter 4, we studied the limits imposed to graphene electrical conductivity by
electron scattering due to acoustic phonons. We considered both scattering due to
in-plane and flexural modes. We saw how, at high temperatures, scattering by in-
plane phonons, being a single phonon process, leads to a resistivity proportional to
the temperature, while scattering by flexural phonons, being a two phonon process,
leads to a resistivity that depends on temperature quadratically. In suspended samples
subject to small strains, scattering by flexural phonons can be the dominant scattering
mechanism limiting graphene resistivity. We have seen that this situation changes once
we consider graphene samples supported by a substrate. In this scenario, coupling of
the flexural phonon to the substrate leads to a severe suppression of electronic scattering
by flexural phonons. Therefore, in supported graphene samples, scattering by acoustic
in-plane phonons becomes the dominant scattering mechanism at high temperatures.

In Chapter 5, we studied Coulomb drag between two parallel metallic layers. By first
considering Coulomb drag between two generic metallic layers, we have established
that in the limit of low temperature, large separation and strong screening, the drag
resistivity depends on temperature as T2, on separation as d~* and on the electronic
density of each layer as n~3/2. This result is valid for an arbitrary electronic dispersion
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relation and intralayer scattering mechanics, only assuming isotropy and that a single
band crosses the Fermi level in each layer. Next, we specialized to the case of Coulomb
drag between two graphene layers, discussing the limitations of the previous low tem-
perature, large separation and strong screening universal result. We also considered
effects of substrate optical phonons to drag. For a graphene double layer encapsulated
in hBN, we found out that phonons lead to an increase of the drag resistivity, an effect
that is manifest at room temperature.

We have studied vertical tunnelling current in graphene-hBN-graphene vdW struc-
tures in Chapter 6. We have seen how conservation of in-plane momentum together
with energy conservation can lead to the occurrence of peaks in the I-V curve of these
devices, which are followed by NDC regions. The positions of these peaks are de-
termined by the relative alignment between the graphene layers. By exploiting the
additional degree of freedom provided by the relative alignment between the graphene
layers and the hBN slab, while taking into account generalized umklapp processes, we
saw that it is possible to create devices displaying several peaks in the I-V curve with
associated multiple NDC regions. The position of the multiple peaks depends sensi-
tively on relative alignment between the different layers. The development of devices
displaying multiple NDC regions is relevant for the development of multivalued logic
devices. We have also studied the contribution of inelastic tunnelling to the current
due to scattering by optical phonons. We found out that scattering by phonons opens
up new inelastic tunnelling channels, which give rise to sharp features in the second
derivative of the I-V curves at the voltages corresponding to the phonon energies.

As a conclusion, we have seen in a series of examples the importance of controlling ex-
ternal factors while studying the properties of 2D crystals and layered materials. While
some properties of 2D materials are rather general and robust, such as the low tem-
perature behaviour of Coulomb drag, others can can be very dependent on the details
of system, such as the occurrence of multiple NDC regions in graphene-hBN-graphene
structures. This dichotomy between generality and specificity, robustness and frailty
of the properties of 2D materials and layered structures has been at the heart of the
interest in this field from its very beginning and will continue drive research in this
area.



CONCLUSIONES

En esta tesis se han estudiado las propiedades mecanicas y electrénicas de cristales 2D.
Hemos visto que, si bien algunas de estas propiedades son universales, otros pueden ser
dependientes de la muestra.

En el Capitulo 2, hemos estudiado los efectos anarmoénicos en las membranas crista-
linas libres en el limite cuéntco de baja temperatura. Para ello cuantizamos la teoria
clésica de placas delgadas. Hemos demostrado que los efectos anarmoénicos conducen a
una reconstruccion de la relacion de dispersion de los fononos de flexion, cambidndola
de x |q|? a ]q|277’h/ 2 Haciendo un calculo perturbativo y un calculo auto-consistente
parical obtuvimos un valor de n, = 2. Encontramos que la expansién térmica de una
membrana libre, que es negativa, se hace finita por efectos anarmoénicos, comportan-
dose en el limite de baja temperatura como ay o< —T2M/(4=m) Vemos también que
el calor especifico debido a los fonones de flexién también se ve afectado por los efec-
tos anarmonicos y que en limite de baja temperatura que depende se comporta como
Cy(;"”) o T4/ (4=mn) .

Hemos visto en el Capitulo 3 que la situaciéon cambia radicalmente cuando la mem-
brana cristalina esta soportada por un sustrato. En esta situacion, la fisica ya no esta
dominada por los efectos anarmoénicos, pero por el acoplamiento de la membrana al
sustrato. Modelando el acoplo entre la membrana y el sustrato mediante uno sensillo
modelo de muelle, hemos visto que el acoplamiento al sustrato lleva a la apertura de
una brecha en la relacién de dispersiéon del fonén de flexiéon. Este modo se acopla al
continuo de estados de fonones actsticos del sustrato, que actiian como un bano disipa-
tivo, dando origen a una vida finita para los fonones de flexiéon con frequecnia finita. Al
mismo tiempo, el fonén de flexiéon también se hibridaré parcialmente con el modo de
superficie de Rayleigh del sustrato. Comparamos estas predicciones con mediciones por
HREELS de las relaciones de dispersion de fonones de grafeno en diferentes carburos
de metales de transicién. A continuacion se estudié la forma como el acoplamiento al
sustrato hace que la expansiéon térmica de la membrana finito, sin dejar de ser negativo.
Para una membrana soportada por un sustrato, la expansioén térmica de la membrana
ya no es una propiedad intrinseca del cristal 2D, pero se convierte en una propriedade
dependiente del sustrato.

En el Capitulo 4, estudiamos los limites impuestos a la conductividad eléctrica de
grafeno por la dispersion de electrones debido a fonones actsticos. Se consider6 la
dispersion debida tanto a modos en el plano como a modos de flexion. Hemos visto
como, a altas temperaturas, la dispersiéon por fonones en el plano, siendo un proceso
involucrando uno fonén, conduce a una resistividad proporcional a la temperatura,
mientras que la dispersion por fonones de flexion, al ser un proceso de dos fonones,
conduce a una resistividad que depende en la temperatura de forma cuadratica. En las
muestras suspendidas sujetas a pequenas tensiones, la dispersion de fonones de flexion
puede ser el mecanismo dominante a limitar la resistividad de grafeno. Hemos visto que
esta situaciéon cambia una vez que consideramos muestras de grafeno soportadas por
un sustrato. En este escenario, el acoplamiento del fonén de flexién al sustrato conduce
a una supresion severa de la dispersion electronica por fonones de flexiéon. Por lo tanto,
en las muestras de grafeno soportadas, la dispersiéon por fonones aciisticos en el plano
se convierte en el mecanismo de dispersiéon dominante a altas temperaturas.
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En el Capitulo 5, hemos realizado un estudio del friccion de Coulomb entre dos capas
metélicas paralelas. Considerando en primer lugar friccion de Coulomb entre dos capas
metalicas genéricas, hemos establecido que en el limite de baja temperatura, gran sepa-
racion y apantallamiento fuerte, la resistividad de arrastre depende de la temperatura
como T2, en la separacion como d~? y en la densidad electronica de cada capa como
n~3/2. Este resultado es vélido para una relacion de dispersion electronica y mecanis-
mo de dispersién intra-capa arbitrarios, solamente asumiendo isotropia y que una sola
banda cruza el nivel de Fermi en cada capa. A continuacion, nos especializamos en el
caso de friccion de Coulomb entre dos capas de grafeno, discutiendo las limitaciones
del anterior resultado universal de baja temperatura, separacion grande y fuerte apan-
tallamiento. También se consideraron los efectos de fonones 6pticos del sustrato en la
friccion. Para una doble capa de grafeno encapsulado en hBN, encontramos que los fo-
nones conducen a un aumento de la resistividad de friccién, un efecto que se manifiesta,
a temperatura ambiente.

Hemos estudiado la corriente vertical por efecto de tinel en estructuras de vdW for-
madas por grafeno-hBN-grafeno en el Capitulo 6. Hemos visto cémo la conservacion
del momento en el plano junto con la conservacion de la energia puede conducir a la
apariciéon de picos en la curva I-V de estos dispositivos, que son seguidos por regiones
NDC. Las posiciones de estos picos son determinados por la alineacién relativa entre
las capas de grafeno. Al explotar el grado de libertad adicional proporcionada por el
alineamiento relativa entre las capas de grafeno y la losa de hBN, teniendo en cuenta
procesos umklapp generalizados, vimos que es posible crear dispositivos que muestran
varios picos en la curva I-V con multiples regiones de NDC asociadas. La posicion de los
multiples picos depende sensiblemente en el alineamiento relativo entre las diferentes
capas. El desarrollo de dispositivos demostrando miiltiplas regiones de NDC es relevan-
te para el desarrollo de dispositivos de logica multivaluada. También hemos estudiado
la contribucién del tunelamiento inelastico debido a la dispersién por fonones opticos
a la corriente. Encontramos que la dispersion por fonones abre nuevos canales de tu-
nelamiento inelastico, que se manifiestan marcadamente en la segunda derivada de las
curvas I-V a los voltajes correspondientes a las energias de los fonones.

Como conclusion, hemos visto en una serie de ejemplos la importancia de controlar
los factores externos en el estudio de las propiedades de los cristales 2D y materiales
laminares. Mientras que algunas propiedades de los materiales 2D son bien generales y
robustas, como el comportamiento a baja temperatura de la friccion de Coulomb, otros
pueden pueden ser muy dependientes de los detalles del sistema, como la aparicién de
miultiples regiones de NDC en las estructuras de grafeno-hBN-grafeno. Esta dicotomia
entre la generalidad y la especificidad, robustez y fragilidad de las propiedades de los
materiales 2D y sus estructuras en capas ha estado en el centro del interés en este
campo desde su inicio y continuara a conducir la investigaciéon en esta &rea.
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GREEN’S FUNCTIONS

Green’s functions are used extensively in the course of this thesis. In this appendix
we set the notations and definitions used throughout the thesis and show some general
relations between the different Green’s functions which are frequently used.

A.1l REAL TIME GREEN’S FUNCTIONS
A.1.1  Definition of different Green’s functions in real time

A Green’s function is a correlation function between two operators at two different
times. Physical quantities can always be expressed in terms of a suitably defined Green’s
function and these are also suitable objects to build perturbation theory upon. Due to
the fact that quantum mechanical operators do not commute in general, by changing
the ordering of the two operators, it is possible to define different Green’s functions.
The usefulness of the different Green’s function can lie either in the physical information
they carry or in technical convenience they provide when performing calculations.

For two operators, A and B, it is customary to introduce the retarded and advanced
Green’s functions as the expectation value of the commutators (anti-commutators) of
the operators:

Retarded: GH(t,t)) = —i© (t — ') <[A(t), B(t’)]i> , (A1)
Advanced: GE5(t,t') =iO(t —t) <[A(t), B(t’)]i> : (A.2)

where [A,B], = AB F BA is the commutator (anti-commutator), with the + (—)
sign applying when the operators A and B are bosonic (fermionic) and (...) represents
averaging with respect to a density matrix operator, p:

(0) = Tr {pO} . (A.3)

These Green functions describe, respectively, the causal and anti-causal response of a
system to an external perturbation. As such the retarded Green’s function is the central
object in linear response theory, see also Appendix B. They also contain information
regarding the dynamics and spectrum of the system that is being studied.

The greater and lesser Green’s functions are defined as the expectation values of the
two possible orderings of the operators:

Greater: G55(t,t') = —i (A(t)B(t')), (A.4)
Lesser: Gp(t,t") = Fi (B(t)A(t)), (A.5)

where the — (4) sign in the definition of the lesser function applying for bosonic
(fermionic) operators. Single-particle observables can always be expressed in terms
of these functions. When one of the A, B operators is a creation operator and the
other an annihilation operator, these Green’s functions describe occupation factors.
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Finally, it is also usual to introduce the time- and anti-time-ordered Green’s functions:

Time-ordered: Gyp(t,t') = —i (T, A(t)B(t)), (A.6)
Anti-Time ordered: Gh(t,t") = —i (T,A(t)B()), (A.7)
where
T, (A()B() = A)B() , ift >t’7 (A8)
+B(t)A(t) , ift<t
T, (A B()) = +B(t)A(t) , ift> t’j (A.9)
AWB() ittt <t

are the time-ordering and anti-time-ordering operators with the + (—) sign for bosonic
(fermionic) operators. These Green’s functions naturally appear in equilibrium many-
body perturbation theory at zero temperature and in the formulation of its extension
to the non-equilibrium case, see also Appendix H.

A.1.2  Relations between different Green’s functions

Notice that from their very definition, G% (¢, '), G% 5(t, t'), GEg(t,t') and G4 4(t, 1)

can all the expressed just in terms of G 5(t,t') and G5z(t,t') as
Ghp(t.t) =0t — 1) (GIp(t 1) — Gip(tt)) (A.10)
Gip(t.t) = —O(t' —1) (GZp(t. 1) — Gip(t,1) (A.11)
GAB( t) =6t —t)Gpt. 1) + O’ - 1)Gip(t 1) (A.12)
Ap(t,t) =0t —1)Gp(t, ) + Ot —¢)Gip(t,t) (A.13)

From these, it is easy to see that the six Green’s functions are not all independent of
each other, but are related by

Ghp(t.t) — Ghp(t.t) = Glip(t.t) + Glg(t.t), (A.14)
Ghp(t,t) + Ghp(t, ) = Gt 1) + G5t 1), (A.15)
Ghp(t,t) — Gip(t,t) = Gt t') — Gig(t,t). (A.16)
The Green’s functions also obey the following conjugation relations
[Ghp(t,1)]" = Gpalt',1), (A.17)
[GRp(t.t)]" = —Galt' 1), (A.18)
[Gapt, )] = —Gpa(t',1). (A.19)

In a situation when the Green’s functions inly depend on time differences, in equilibrium
of steady states, we can perform a Fourier transform in time

Gap(w /dtGWtGAB(t 0). (A.20)

For the Fourier components, the conjugation relations read:
[Ghp@)]" = GBaw). (A.21)
[Gf‘B(w)]* =—-Gja(w), (A.22)

[GapW)]" = —GRaw). (A.23)
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A.1.3  The spectral function and spectral representation

It is also usual to introduce the spectral function as
Aap(t,t) = ([A(), BE)] ). (A.24)

From these definition, the spectral function can be written as the difference between
the retarded and the advanced Green’s function or the difference between the greater
and the lesser Green’s function

AAB(tv t/) =1 (GﬁB(ta t/) - GﬁB (t’ t,)) (A25)
=i (Gt t) — Gt 1) . (A.26)

Notice that the retarded and advanced Green’s functions can be written in terms of
the spectral function as, Egs. (A.10) and (A.11),

GRp(t,t) = —iO(t — ') Aap(t,t), (A.27)
Gap(t,t') =iO(t' — t)Asp(t,t)). (A.28)

The spectral function plays a very important role, as it carries information about the
spectrum of the theory.
Notice that by making a Wigner transform in time of the Green’s function as

Ghp(w,ton) = /dteiwtcﬁB(tCM +t/2,ton — t/2), (A.29)
and using the Fourier transform of the Heaviside step function
dw efiwt
Ot)=— | ———— A30
(t) / 2mi w + 01’ ( )

where 07 is a small infinitesimal positive number, we obtain a spectral representation
for the retarded Green’s function, which can be written as a Hilbert transform of the
spectral function

dv Aup(w —vitom)
27 v+i0t

where Ayp(w,ton) is the Wigner transform of A4p(t,t'), defined in the same way as
Eq. (A.29). A similar expression can be obtained for the advanced Green’s function
by replacing i0" by —i0T in the previous expression. Notice that in time translational
invariant system the Green’s function can only be a function of the time difference t — ¢’
and its Wigner transform is therefore independent of the centre of mass time tops. In
this case, the spectral representation Eq. (A.31) simplifies to

Ghplw, tem) = , (A.31)

dv Apap(w —v)
R —

Ci) = [ o e
:P/dVAAB(w—V)

7
o ” — §AAB(W)7 (A.32)

where in the last line we have used the Sokhotski—Plemelj formula
1 1
—— = P— —inwd(v), (A.33)
v

where P represents the Cauchy principal value. This equation is a generalization of
the usual Kramers-Kronig relation, relating the complete Green’s function to its anti-
hermitian part, the spectral function.
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A.2 IMAGINARY TIME MATSUBARA GREEN’S FUNCTION

System in thermal equilibrium are described by the density matrix operator
e BH
P=—7

(A.34)

with H a time-independent Hamiltonian and Z = Tr {e‘ﬁH} the partition function. In
equilibrium problems it is usual to adopt an imaginary time formalism. The continua-
tion of time to imaginary values as a computational trick was first pioneered by Wick
[240] in the context of zero quantum field theory and later generalized by Matsubara
[241] to quantum statistical mechanics. The imaginary time Matsubara formalism is
a standard computation technique in the tool box of any condensed matter theorist
and there are many excellent textbooks that cover it in detail. For a modern coverage
of the topic, see for example [54] for a canonical quantization approach and [55] for
an approach based on the functional path integral formalism. As such, our aim is not
to provide an overall discussion of the topic but just to set notation and to show the
relation between Matsubara Green’s function and real time retarded Green’s functions.

A.2.1 Definition of Matsubara Green’s function

The main idea behind the imaginary time formalism comes from the fact that the
equilibrium thermal density matrix p = e ##/Z and the time evolution operator
U(t,t) = e ") have the same form, involving the exponential of the Hamilto-
nian. As a matter of fact if we allow for imaginary times t — —iT we can write
p=U(i3,0)/Tr{U(i/3,0)}. With this in mind the imaginary time Matsubara Green’s
function for two operators A and B, which we represent by G4p(7), is defined as

Gap(r) = — (T-A(1)B(0))
_ T {e=PHT.A(1)B(0)}

A.35
Tr{e—BH} ( )
In this expression, the operators evolve in imaginary time as
A(r) = eI A(0)e HT, (A.36)
obeying the Heisenberg equation in imaginary time
dA
d(T) =[H,A(1)], (A.37)
-

and T is the time ordering operator in imaginary time

T, (A B() = { ADBE) (A.38)

+B(A(r) ,ifr<7

where the +sign applies for bosonic/fermionic operators. The imaginary time Green’s
function is very convenient as its perturbative expansions obey the linked-cluster the-
orem, allowing for a simple representation in terms of connected Feynman diagrams
[55, 242].

From Egs. (A.35) and (A.36) and the definition of T, it is simple to see that the
Matsubara Green’s function is periodic/anti-periodic in imaginary time, Gap(7+ ) =
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+Gap(T), for bosonic/fermionic operators. This means that the Matsubara Green’s
function can be expressed in terms of a Fourier series as

Gap(r) = ; > Gapliwn)e ™™, (A.39)

Wn,

with iw, Matsubara frequencies, which are defined as

2
Wp = %n, for bosons (A.40)
1
Wy, = 2; <n + 2) , for fermions (A.41)

with n € Z an integer, such that the (anti-)periodicity in 7 is immediately satisfied.
The Matsubara Fourier components G zp(iw,) are give by

s
Ganlis) = / drein™ G 4 p(7). (A.42)
0

A.2.2  Relation between Matsubara and real time Green’s functions

We will now see the relation between Matsubara Green’s function and the real time
Green’s functions. In order to do that we use the Lehmann representation for the
Matsubara Green’s function. The Lehmann representation of the Green’s function is
expressed in terms of the exact eigenstates, |n), and energies, F,, of the Hamiltonian
H?

H|n) =E,|n). (A.43)

Noting that the operators in the Heisenberg picture evolving according to A(r) =
e A(0)e~H7 and from the definition Eq. (A.35), the Lehmann representation of GAp(7)
is given by

1

Gap(r) =—-6(1)-, > e PEneEn=EmT (n] Alm) (m| B |n) (A.44)
1
FO(-7) > e BB e(En=Em)T (n] A|m) (m| B |n) . (A.45)

The Matsubara Fourier components are therefore given by

B .
Gapliw,) = /dTe“””TGAB(T)

0
1 e_ﬁEn F e_ﬁEm
= = A Bin). A.46
G e A I Bln). (Ad0)
n,m
where we have used the fact that ¢®? = £1 for bosonic/fermionic Matsubara fre-

quencies. In equilibrium system we can also introduce a Lehmann representation for
the retarded Green’s functions, G% 5(w). From the definition Eq. (A.1), we obtain the
Lehmann representation for GG (t —t')

1 . /
R N — T —BE,, —BEm \ i(En—Em)(t—t')
Giaplt —1) Ot —t )Z ; (6 Fe ) e (n| A|m) (m| B n),

(A.47)
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which has Fourier components given by

1 e_BEn F e_ﬁEm
Glp(w) = 5 Y~ el Al Bl (A9

n,m

Comparing Egs. (A.46) and (A.48) we can easily see that the retarded Green’s function
by be obtained from the Matsubara one by the analytic continuation procedure

Ghp(w) = Gapliw, — w+i0h). (A.49)

We also notice that the advanced Green’s function, G4 z(w) can be obtained similarly,
making instead the replacement: iw, — w —i07.



LINEAR RESPONSE THEORY

In most interesting situations, condensed matter systems are never in equilibrium.
When performing an experiment or when using a condensed matter system in an appli-
cation, one will often (unless when studying purely thermodynamic properties) apply
some external perturbation to the system of interest, which will drive it out of equi-
librium, a then measure some observable of the system. In this scenario, the study
of equilibrium systems might seem a bit useless. However, the Kubo formula [243]
allows to express the response of the system to an external perturbation in terms of
the equilibrium properties of the system, provided the perturbation is weak.

B.1 HAMILTONIAN AND INTERACTION PICTURE

Let us assume we are interested in measuring the observable O, in a system to which
we apply a perturbation. The system is governed by the Hamiltonian

Hy(t) = H+ V(1) (B.1)

where H is the Hamiltonian of the unperturbed equilibrium system and V' (¢) = Ophy(t)
describes the external perturbation, with hy(t) the external field which couples to the
operator Op. If the perturbation V(t) is weak, we expect the expectation value of O,
can be written in terms of a Taylor series in hy(t):

(Oa(t))y, = <OQ>V:0+/dtlel?(t,tl)hb(tlwr/dtl/dt2xﬁl(t,tl,tg)hb(tl)hc(tg)Jr...,
(B.2)
where (...);, indicates that the average is performed taking into account the external

perturbation V' (¢) and X((z"a)l_,_an (t,t1,...,tn) are the coefficients in the Taylor series

1 6" (0a(t))
() (b, ey ty) = — LIV : B.
Xaar.an (b1 tn) = o S i ) —o (B3)
The Kubo formula tells us is how to express the coefficients Xg?)l_,,an (t,t1,...,tn) in terms
of correlation functions of the system in the absence of the perturbation V (¢).
The expectation value of O, is given by
(Oult))y = T (pv (H)0) (B.4)

where py () is the density matrix of the system, which in the Schrédinger picture and
in the present of V(t) evolves according to

0
1P (1) = [Hy (1), pv (1)) (B.5)
The time evolution of py () can be formally written as

pv (t) = Uv(t,to)p(to)Uv (to, 1), (B.6)
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where £ is some initial for which V(¢ < tp) = 0, and the time evolution operator obeys
the Schrédinger equations

%m@w:—MMMh@ﬂ, (B.7)
;/Uv(t,t’) = iUy (t,¢')Hy (t'), (B.8)

with the initial condition Uy (¢,t) = Id. We can move from the Schrédinger picture to
the interaction picture, by introducing the S-matrix

S(t,t') = Ulte, ) Uy (t, YU (¥, tg), (B.9)

where U(t,t’) is the evolution operator in the absence of V(t), which for a time-
independent H is given by U(t,t') = e *H(t=t) From, Eqs. (B.7)-(B.9) it is easy
to see that the S-matrix obeys the Schrodinger equations

z’%S(t, t) = Vi(t)S(t,t), (B.10)
—i%S(t,t’) = S(t,t)Vi(t), (B.11)

with the initial condition S(¢,¢) = Id and V7(t) the external perturbation in the inter-
action picture

Vi(t) = Ulto, )V (DU (¢, o). (B.12)

Therefore, we can can write the density matrix as
pv(t) = U(t to)pr (DU (to, ), (B.13)
where py(t) the density matrix in the interaction picture
pr(t) = S(t, t0)plto) S (o, ), (B.14)
which obeys the equation
iaor(t) = Vi(0) pr(8)] (5.15)

Therefore, the expectation value Eq. (B.4) can be rewritten as

<Oa(t)> =Tr (pl(t)Oa(t)) ’ (B'16)

where O,4(t) is the operator O, in the interaction picture which evolves as

Ou(t) = Ulto, t)O,U (t, to). (B.17)
We can now expand py(t) in powers of V (¢).
B.2 GENERAL KUBO FORMULA

Equation (B.15) can be written in integral form as

p](t) = p[<t0) - i/t dt, [V[(tl),p[(t/)] . (B.18)

to



B.3 KUBO FORMULA FOR LINEAR RESPONSE

Following the original paper by Kubo [243|, we multiply the perturbation V;(t) by a
parameter A and write pr(t) as a power series in A,

“+oo
pr(t) = > A" (0). (B.19)
n=0

Inserting this expansion in the integral equation Eq. (B.18) and equating equal powers
of A we obtain the recursion relation for pgn) (t)

(1) = plto) (B.20)
P?Rﬂ::—ilwﬁ/ﬁﬁﬁmp?_ndﬁ ,n > 1. (B.21)

Iterating these relations we obtain

P (1) = (—i)"/t dtl.../tn_l dt Vi(t), Vi(ta), . Vit), plto)] ] (B.22)

Inserting this result into Eq. (B.16) we obtain the Kubo formula

Oult))y =3 (—i)" / ... / T (Vi) Vi), e Vit p(t0)] 1] Oa(t))
" (B.23)
Notice that by using the cyclic property of the trace we can write
Tr ([A,B]C) = Tr (ABC) — Tr (BAC)
=Tr(BCA) —Tr (BAC)
=Tr(B[C,A]). (B.24)

Using this property repeatedly, the Kubo formula can alternatively be written as

<Oa@»v-—§:(—ﬂn/~dh~l/n_nﬁnGLlOa@%V?@ﬂ]JG@ﬂ]wwVﬁ@HDv:m
n=0 to to

(B.25)
By writing Vi(t) = Op(t)hp(t), we identity the coefficients ng)lan (t,t1, ..., tp) from
Eq. (B.2)

Xty e t) = (=) Ot — £1)O(ty — t2) X .. X Oty — ) X
X ([[--[0a(t), Oay (t1)] s Oay (t2)] -y Oa, (En)])y—g - (B.26)

B.3 KUBO FORMULA FOR LINEAR RESPONSE

In particular, if we are interest in the response of the system only to first order in the
external field, the so called linear response, XS;) (t,t’) is given by the two point retarded
Green’s function

Xt t) = GE o, (t,1) = —iO(t — ') ([Oa(t), Ou(1)]) - (B.27)

This is the celebrated Kubo formula for linear response.
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THE FLUCTUATION-DISSIPATION THEOREM

In a general state, all the information contained in the six real time Green’s func-
tions defined in Appendix A can be encoded in just two Green’s functions, G5p5(t, )
and G7z(t,t'), with the remaining Green’s functions being related to these two by
Egs. (A.10)-(A.13). However for an equilibrium state, described by the thermal density
matrix

e BH

P=—7
all Green’s functions are determined by the spectral function, Aap(t,t'). The reason
for this is that the thermal equilibrium state is completely determined by the spectrum
of the Hamiltonian (and the temperature). In particular, the fluctuation-dissipation
theorem states that the greater and lesser Green’s functions are related to the spectral
function by

(C.1)

+iG5p(w) = ne(w)Aap(w), (C.2)
Gp(@) = (1 £ ns(w)) Aap(w), (©3)

where ni(w) = b(w) = (66‘” — 1)_1 is the Bose-Einstein function and n_(w) = f(w) =
(eﬁw + 1)_1 is the Fermi-Dirac function.

The proof of the fluctuation-dissipation theorem can be obtained using the Lehmann
representation of the Green’s function, which is expressed in terms of the exact eigen-
states, |n), and energies, E,, of the Hamiltonian H, H |n) = E, |n). Recalling that
in Heisenberg picture operators evolve according to A(t) = et Ae=tHt the spectral
function can be written in terms of the exact eigenstates as

App(t —t') = <[A(t)’ B(t/)]i>
Y

where we have anticipated that in equilibrium a two-time function is only function of
the time difference. Writing the spectral function in Fourier components we obtain

AAB(W) :/dtemAAB(t)

_ 27” (795 % P8 ) 6 (w + By — Eyn) (nl Alm) (m| Bln).  (C.4)

n,m

Using the Diracd-function this can be written as

(66‘” F 1) e BEm

27
Asp(w) = —25(w+En—Em) (n] Alm) (m| B|n) (C.5)
Z n,m (]_ :F e_ﬂw) e_ﬁEn
Let us now look at the Lehmann representation of the lesser Green’s function
Ghp(t—t) =Fi (B(t)A({))
i _ (B — _y
=5 3 P E I (o] Afm) (m| Bln),  (C6)

n,m
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which has Fourier components
G5 (W) == :Fz'%” S e BB (w + En — Ew) (n] A |m) (m] B|n). (.7)
The greater Green’s functio;l can be similarly expressed leading to
G p(w) = —i%” S e BEnG (w + Ey — Ey) (n] Alm) (m| Bln) . (C3)
Comparing Egs. (C.7) and (C.8) with Eq. (C.5) we can easily see that
1

+iGp(w) = ] T Aan W), (C.9)
1
iG3pW) = T Aan (), (C.10)

using the definition of the bosonic/fermionic distribution function, ny (w) = (e — 1) 71,

we obtain the fluctuation-dissipation theorem, Eqgs. (C.2) and (C.3).



GENERALIZED MIGDAL-GALITSKI-KOLTUN ENERGY SUM

The Migdal-Galitskii-Koltun (MGK) energy sum provides a convenient formula to com-
puting the total energy of an interacting system, with quartic, or two-body, interactions,
provided we have knowledge of the exact 2-point Green’s function. In this appendix we
will review the original formula for the MGK sum [97, 98] and provide a generalization
of it that allows us to express the total energy of a system with both cubic and quartic
interactions.

D.1 ORIGINAL MGK SUM FOR SYSTEM WITH QUARTIC INTERACTIONS

We consider a system of interacting bosons or fermions with quartic interactions. The
second quantization Hamiltonian that describes the system is given by

H = habclcb + %vabcdcgc;gcccd, (D.1)
where hgp, is the non-interacting part of the Hamiltonian, vg,.q are the quartic interac-
tion matrix elements and ¢} (c,) are creation (annihilation) operators for a particle in
the single-particle state a. vgpeq is chosen to be (anti-)symmetric under a <> b and ¢ < d.
We are using Einstein summation convention, such that repeated indices are summed
over. The creation/annihilation operators obey the equal time (anti-)commutation
relations

[ca, cﬂ N = cacz F cha = Oabs (D.2)

where the + sign applies to bosons/fermions. Since we are considering an equilibrium
system we will employ the imaginary time Matsubara formalism. The MGK energy
sum allows to express the expectation value of the Hamiltonian (H) in terms of the
Matsubara Green’s function

Gap(r) = = (Trea(r)e}(0)) (D.3)
The MGK tells us that
11 . . w
<H> = :|:§E g: (an(sab + hab) Gba(zwn)e "77, (D.4)

where G g (iwy,) is the Fourier transform of the Matsubara Green’s function (see Eq. (A.42))
and n — 07 is an infinitesimal, positive constant.

The proof of the MGK energy sum, Eq. D.4, is based on the equation of motion
for the Matsubara Green’s function. We notice that in imaginary time the Heisenberg
equation of motion for ¢, reads (see Eq. (A.37))

dca

=[H.c,
dT [70]

= —habCh — VabedC)CeCd (D.5)
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Therefore the Matsubara Green’s functions obeys the equation of motion
0rGiat(7) = —6(7)8ap + hae { Treo(7)c}(0))
+ vacde (Trel(P)ea(r)ee(7)e}(0)) (D.6)
Taking the limit 7 — 07, we have that §(07) = 0 and therefore obtain
0rGap(07) = Hhae (] (0)6e(07)) + tgee () (0)e(07)ecal07)ee(07)) . (D7)

Writing the average energy as

(H) =(T)+ (W), (D.8)
(T) = hay (ches ) (D.9)
<W> = %vabcd <C,T105T,0ccd> ) (D.lO)

we see that contracting a and b in Eq. (D.7) gives us

d

+ %Gaa(O‘) =(T)+2(W). (D.11)

And therefore we can write the two contributions to the energy as

(T) = FharGra(07), (D.12)
(W) = 5 (9-Gaa(07) + hasGa(0)) (D.13)

Therefore, the total energy can be written as
1 _
<H> = :F§ (_6aba7' + hab) Clba(0 ) (D'14)

Writing the Green’s function in terms of Fourier components we obtain Eq. (D.4).

A more suspicious reader might question the validity of procedure of taking the limit
7 — 07 in Eq. (D.6) and while doing that setting the J-function to zero. In order to
convince the suspicious reader we will follow and alternative path in order to prove that

1 . . ;
-3 Z i Glaa (iwn )™ = Lhay <clca> + Vobed <clc£cccd> ) (D.15)
W
In order to prove this, we will use the Lehmann representation for the Green’s function
Gap(iwy). Notice that a Green’s function for two generic operators A and B has the

Lehmann representation, Eq. (A.46),

. 1 e_ﬁEn F e_/BEm
Gaplion) = 5 3" T (al Alm) (ml Bl (D.16)

n,m

Now let us look at the related quantity

1 .
G = 5 3" iwnGap (iwn)e, (D.17)

W,
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with n — 07. The sum over Matsubara frequencies can be performed using contour
integration and we obtain

27

1
= :FE Zni (Em — En) (efﬁE” F efﬁEm> X
n,m

GS}B = ifdz,ni(z)eznzCAB(z)

X (Ep — Ep) (n| A|m) (m| B |n) e(Fm=Enn (D.18)

where ny (w) = (e F 1)71 is the Bose-Einstein (Fermi-Dirac) function. Notice that
when performing the sum over Matsubara frequencies the factor e*7 with n > 0 is
essential to guarantee the convergence of the sum [54] (although it is often omitted).
The inclusion of this n — 0T factor is compatible with the procedure of taking the limit

7 — 07 in Eq. (D.6). In Eq. (D.18), we can safely set n = 0 and rewrite G(Alj)B as

Gy =% 30 (B — By) nl Alm) (m| Bl
— T (B[H, A)) :¢<B‘j:>. (D.19)

Using this result for the Green’s function G (iwy,) we conclude that
1 4 deg
3 ; iwnGap(iwy, e = + <czdc7_> ) (D.20)

Using the Heisenberg equation of motion, Eq. (D.5), we reobtain Eq. (D.7).
Finally, we notice that Eq. (D.4) can also be expressed in terms of the spectral
function

(H) =4 / g—:ni(w) (@6ap + ) Apa(), (D.21)

where Agp(w) is the spectral function.

D.2 GENERALIZED MGK SUM FOR BOSONIC FIELDS WITH CUBIC AND QUAR-
TIC INTERACTIONS

We will now present a generalization of the MGK sum for interacting systems with both
cubic and quartic interactions. This result will be applied for the theory of anharmonic
membranes studied in Chapter (2) and, therefore, We will focus on systems involving
bosonic fields. We consider a system involving two kinds of fields ¢, and ¢,, with
canonical conjugate given, respectively, by 7% and @w® , such that the fields obey the
equal time canonical commutation relations

[qﬁa, wb} = P, (D.22)
[¢a "] =i, (D.23)

with the remaining commutators being zero. The Hamiltonian for the system, expressed
in terms of fields and canonical conjugate momenta, is given by

1 1 1. 1-
H = gy’ + Sk paty + S0 @ + Sk apy

1 1
+ icmbc(;oad)b(bc + évab0d¢a¢b¢c¢d7 (D~24)
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where the fist line includes the kinetic and potential energy for the fields ¢, and ¢,
and the second line includes the cubic and quartic interaction terms, with ¢**¢ chosen
to be symmetric under b <+ ¢ and v%°? chosen to be symmetric under any permutation
of the indices. gap(Gap) and ko (k) are, respectively, the mass and harmonic potential
tensors. Once again we are employing Einstein summation convention. We will show
that the average energy of the system can be expressed in terms of the 2-point Green’s

functions
Dab(Ta T/) = - <Tf¢a(7)¢b(7—,)> ) (D'25)
Dab(Ta T/) = - <TTSOa(7—)SOb(7J)> ) (D26)
as
(Hy = —le; ; (39ab (iwn)2 + k“b) Dy (it )en
- 3" (itwn)? Dyg (iwn )™, (D.27)

with  — 0% and where g?(§) is the inverse of gap (Gap), 9%°gse = 62. Although we are
considering equilibrium systems for which Dgy(7,7') and Dy (7, 7') are only functions
of 7 — 7/, it will be useful to treat these Green’s functions as functions of two time
variables.

The proof of Eq. (D.27) follows the same lines as the proof for the original MGK sum.
First we notice that the fields obey the Heisenberg equations of motion in imaginary

time
.d¢a b
= gupr, D.28
7 I JabT ( )
dm?® a ac 1 abe
i =~k — "oy, — v Pppeda, (D.29)
dr 2
and
dpq ~ b
= Ya ) D.
7 I Jab™@ (D.30)
dw® ~ 1
. — _k(lb _ ~abe . D.31
i— o — 5 by (D.31)

From these equations, we obtain the equations of motion for the Green’s functions
Dyy(1,7") and Dgy(7,7'):

(607 — K°°) Day(r, 7') = 536() — 4 (Trpe(r) ba() ("))

— S (TGP (). (D32
(gacaz - k) Dey(r,7) = 528(r) — %cavcd (Tre(T)da(T)on()) . (D.33)

Now we set 7/ = 0 and take the limit 7 — 07, obtaining
= (907 — k) Dy (07) = = (¢3(0)0e(07)$a(07))
50 (3(0)0(0)0u(07)0c(07)) . (D34)

- (302 = 1) Bf07) = 3 ((0)007)6a(0). (037
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Notice that the average energy of the system can be written as

(H) = (T) 4+ (U) + <T> + <U> + <W<3>> + <W<4)> : (D.36)
with
_ 1 a_b AN 1~ a_b
<T>—2gab<7r 7T>, <T>—29ab<ww>, (D.37)
_ 1 ab T\ 1~ab
(U) = 5K (duth) () = 35 (puer) (D.38)
and
3) 1 a,be
(W) = e (patroe) (D.39)
1
(W) = o™ (gudrdeda) (D.40)
Therefore, it is easy to see that Eqs. (D.34) and (D.35) give us
gU02D4(07,0) = —2(U) —2(W®) — 4 (WD), (D.41)
GP02Dpa(07,0) = —2 <U> < > (D.42)
where the potential energy terms, (U) and < > can be written in terms of the Green’s

functions as

(U) = 3K D1a(0,0), (D.43)
<U> - —%l%ab[)ba(o,()). (D.44)

We can also rewrite Egs. (D.41) and (D.42) as
(4) L b2 - Lobo2i -
(W) = =29 02D1a(07,0) + 55”02 D4 (07, 0)
1 i
—5(0)+ (0}, (D.45)
<W(3)> = §92 Dy (07,0) — 2 <U> . (D.46)

We still have to express the kinetic energy terms, (T") and <T>, in terms of Green’s
functions. In order to achieve that, we now introduce the Green’s functions for the
conjugate momenta

DY (7, 7)) = — <T77ra(7')7rb(7")> , (D.47)
D, ) = — (" ()" (7)). (D.48)

Using the Heisenberg equation of motion for ¢, and ¢, it is easy to see that
0707 Dap(T,7') = —gapd(T — 7') = Gacgra D (7, 7'), (D.49)

with a similarly relation holding for Duy(7,7') and D®(7, 7). By setting 7' = 0 and
taking the limit 7 — 07, we obtain

070 Dap(07,0) = —gacgpaD™(07,0). (D.50)

18!
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Therefore we can write the kinetic energies as
1
(T) = 5gabanM)ab((r, 0), (D.51)
. 1 -
(T) = 53"0:0: Dut(07,0). (D.52)

The total energy of the system can thus be written as

1 1
—g"07 — 4k“b> Dya(07,0)

2

() = <1g“baTaT/ -

+ <;§“"67an — ;%baZ) Dy (07,0). (D.53)

Or expressing the Green’s functions in Fourier components we obtain Eq. (D.27).
Notice that the generalized Eq. (D.27) can also be expressed in terms of the spectral
functions for real frequencies

(H) = E / ;l—:b(w) (3gabw2 + k“b) Apa(w)

+ / Z—:b(w)gabWQAba(w), (D.54)

with b(w) the Bose-Einstein function and Ay, (w) and Ay, (w) the spectral functions for
theg, and ¢, fields, respectively.



GRAPHENE DENSITY-DENSITY CORRELATION FUNCTION

In this appendix, we provide the zero temperature expression of the graphene density-
density correlation function as calculated within the massless Dirac equation model.
Analytic expressions for the density-density correlation function in doped graphene
were first obtained in Ref. [151] and soon after in Ref. [244]. The goal of this appendix
is not to replicate the calculation, which is ratter laborious, but instead to provide
a quick reference to the necessary definitions and the final results. A detailed and
clear derivation of the graphene density-density correlation function is also provided in
Appendix A of Ref. [245].

E.] REDUCIBLE AND IRREDUCIBLE DENSITY-DENSITY CORRELATION FUNC-
TIONS

In general, the full reducible retarded density-density correlation function is defined as
XE(t,x; ¢, x) = —i0 (t — ') {[p(t, x), p(t',x)] ), (E.1)

where p(t,x) is the electronic density operator. Within linear response theory, Eq. (B.27),
if we add a perturbation to the system Hamiltonian of the form

Vt) = —62/dDXd>ext (t,x) p(x), (E.2)

where ¢yt (t, %) is an external electric potential, the total induced charge in the system
is given by

(p(t,x)) = /dt//deXR(t,x;t/,x’) (—62) Pext (', %), (E.3)

where D is the number of spacial dimensions. Notice that in an interacting system, the
reducible density-density function already takes into account effects of screening, that
is it also takes into account that the induced density also generates a electric potential,
®ind (t,x), which adds to the external potential ¢eyt (t,x). The density response to
the total electric potential @rotal (t',X") = @ext (£,X) + ding (¢, %), is described by the
irreducible density-density correlation function, XR(t, x;t',x'), as

(p(t,x)) = /dt//dDXXR(t,X;t/,X/) (—€?) drotal (¥, %) . (E4)

The reducible and the irreducible density-density correlation function are related by
the Dyson screening equation

Xt =yl y?.v.XE (E.5)

where V' represents the bare Coulomb interaction and - represents convolution over
time and space coordinates. Diagrammatically x is obtained only from diagrams that
remain connected after a Coulomb interaction line is cut.
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E.2 LINDHARD IRREDUCIBLE DENSITY-DENSITY CORRELATION FUNCTION

Within the random phase approximation (RPA), the irreducible density-density corre-
lation function is replaced by the bare one

it x;t',x') = —i© (t —t) ([p(t,x), p(t',x)] >0’ (E.6)

where (), represents averaging over the non-interacting system. In an equilibrium
system, due to time translational invariance, XOR(t,x; t',x’) is only a function of t —
t'. We will also focus on continuous models, where the system is approximated by
a translational invariant one, such that Xﬁ(t,x;t’ ,x') is also only a function of x —
x’. Therefore, it is useful to write the density-density correlation function in Fourier
components as

Rw,q) = /dt/deei“’te_iq'xxR(t,x;0,0). (E.7)

Writing the density operator in terms of creation and annihilation operators in the
eigenstate basis as, see Eqs. (4.34) and (4.37),

Z 1q-X Zpk k+q z ek,\ €k+q, )\’) q][)k )\¢k+q,/\’ (ES)

and using Egs. (E.6) and (E.?), we obtain the Lindhard expression for the irreducible
density-density correlation function

Z ‘ A0 )2 f €k A\ — EF) f (€k+q,>\’ _ GF) (Eg)

Pik+a w+ 0T + ex )\ — €xtqN ’

7 *
where ep is the Fermi energy and we have used the fact that pk + k= (pﬁ 1); n q> .

E.3 DENSITY-DENSITY CORRELATION FUNCTION FOR DOPED GRAPHENE
AT T =0
For graphene, we have that
€k = )\’UFﬁ ’k‘ s (E.lO)

o2 1
A
‘pk7k+q’ =3 (1+ AN cosbiktq) - (E.11)

Following Ref. [151] it is useful to split the (|q|,w) plane into different regions

1A — —,2—- =
- < min <k: , kl ,

lal  w lq|
IB:—< —<2—-—
k?F<€F kp’
q] w _|q
2 |— -2 < — < —
kr er kg’

la| |d w _|dq
9B : AN o)« = By o
A (kp ki e ke

3A:—<@— ,

3B :
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Figure E.1: Regions in the (|q|,w) plane used to write the graphene density-density correlation
function by parts.

with the graphene density-density correlation function being defined by parts in these
regions. These different regions are represented graphically in Fig. E.1. In the following
we give the analytic expressions for the real and imaginary parts of the bare density-
density correlation function of doped graphene at zero temperature [151, 244, 245]. For
convenience the following functions are introduced

C(z) = xzv1-—2?—arccos(x), (E.12)
F(z) = xvx?—1—arccosh(x), (E.13)

which allow to express the graphene density-density correlation function in a compact
form.

E.3.1 Real part

e Region 1A:
2 k
Rex/(w,q) = —=——, (E.14)
TI"UFh
e Region 2A:
2 k 2 -2
Rexf(w,q) = — = Fh _ 4l C (‘“" - €F> , (E.15)
TPt arJwehlq)? - w2 PRI

e Region 3A:

189



190 GRAPHENE DENSITY-DENSITY CORRELATION FUNCTION

2 —
Rex(w.q) = — 247 ¢ 4l [C <w+2€F> o (w 26F>} |

moph (vrh|q))? — w? vrhlq| vphlq|
(E.16)
e Region 1B:
2
Rex(w,q) = —2 T4 lal [F <2eF+w> _F<26F_w>}’
PR gy Jur — (uphla)? U\ Pl vrhlal
(E.17)
e Region 2B:
Rex"(w, q) = —2 1 laf’ - <w + zeF> Es)
TORR o - (vrh|q))? vrphlq|
e Region 3B:
2
ReXR(w,q):_g kr + gl [F <w+2ep> _F(w_gﬁFﬂ |
morh e — g2 L\ vl vehlal
(E.19)
E.3.2 Imaginary part
e Region 1A:
ImXR(w q):_ ‘q|2 [F <26F+w) _F<2€F_w>:| (E 20)
4my/(ophlg)? — w2 L\ VFPld vrhldl
e Region 2A:
2
q w + 2€
Imx"(w,q) = - 4 F < vph| T) ’ (E.21)
am\/(ophla)? —w2 \UFl
e Region 3A:
Imx®(w,q) =0, (E.22)
e Region 1B:
e Region 2B:
2
q 2ep —w
Imx " (w, q) = 4 c < thy ’>, (E.24)
A/ w? — (th‘qDZ rh|q
e Region 3B:
2
ImXR((,u7 q) = — ql (5.25)

4Jw? = (vph|a))?
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E.3.3 Intraband contribution to the imaginary part

In Chapter 5, we need to evaluate the conduction band intraband contribution to
the imaginary part of the density-density correlation function, which is given by the
imaginary part of the A = \' = 41 contribution to Eq. (E.9). It is relatively easy to
see that the A = X = +1 contribution is the only contribution to the imaginary part
of the density-density correlation function in the regions 1A and 2A. Therefore, we can
write

2
q
Imy¥ | (w,q) = - il x

4y / (vph|q|)? — w2

2ep+w | 2ep—w W : m _i|
Fst) - F () o <min (22— 32) (E.26)
w2e lal w _ ld , .
F (vaL|Cﬁ) > kg 2‘ < < kp

F
with Imxfy +(w,q) = 0 being zero in the remaining regions.







KUBO FORMULA FOR DC CONDUCTIVITY

In this appendix we will see how the Kubo formula for linear response theory, Eq. (B.27),
can be used to compute the DC conductivity. In particular we will specialize to the DC
conductivity of metals in the case where electrons are subject to quasi-elastic scattering.

F.1 KUBO APPROACH TO CONDUCTIVITY

The conductivity tensor relates the charge current density, J(¢,x), to the total electric
field, E(t,x), as

(s(t,x)) = / i / dPxarys(t,x: ¢, XV By (¢, %), (F.1)

where D is the number of spacial dimensions. In linear response, the conductivity tensor
oij(t,x;t',x’) is a property of the equilibrium system and therefore only depends on
the time arguments is via their difference, t —¢'. In this situation it is useful to perform
a Fourier transform in time, leading to

(Ji(w,x)) = /dDXUij(w,x,x’)Ej(w,x’). (F.2)

Now, we will consider that the system is governed by an Hamiltonian with a kinetic
energy term of the form

1
K= / dPxy’ (x) (hipi + 2h,~jpipj> P(x), (F.3)
with p the momentum operator, which we write in a symmetric form as
1
P:E(e—%)' (F.4)

In Eq. (F.3), we have included terms both linear and quadratic in the momentum
operator, such that we can treat Dirac and Schrédinger electrons on equal footing.
The quantities h; and h;; are in the most general case matrices. The current operator
defined by the kinetic Hamiltonian Eq. (F.3) reads

GeJi(x) = e’ (%) (hi + hijp;) Y (x), (F.5)

Ji(x) is now the current operator, g, is the charge of the particles (g. = —e for electrons).
We describe the electric field E(¢, x) using the Weyl gauge, such that the scalar potential
is zero and the electric and magnetic fields are expressed only in terms of the vector
potential as E = —0;A and B = V x A. Under minimal coupling, the momentum
operator is changed to p — p — ¢.A. Therefore, the kinetic term of the Hamiltonian
in the presence of the vector potential can be written as

1 q?
K = /dDXlﬁT(X) <hipi + §hijpipj — qehiA; — gehyipj Ai + 2hiinAj> P(x) (F.6)

193



194

KUBO FORMULA FOR DC CONDUCTIVITY

and the current operator becomes

Jiel(x) = JP(x) + I (), (F.7)
Qe!]ngjlr(x) = Qed’T(a}) (hz + hijpj) ¢(X)7 (F8)
@ (x) = =@l (x)hiap(x)A;(x), (F.9)

where we have split it into a paramagnetic term, J'*(x), and a diamagnetic term,
Jda(x). Notice that we can obtain J32(x) from JF* (x) by formally differentiating the
latter with respect to p.

Using the Kubo formula for linear response Eq. (B.27), the total current is expressed
in the presence of the vector potential A is given by

(J;(t,x)) = /dt’/dZXICij(t,X;t/,X’)Aj(t’,x’), (F.10)
with the kernel IC;;(t,x;t',x) being given by
Kis (b3t %) = —g2TUE (1,33, %) — a2 (T (6 ) higap(t, %) ) 8t — #)3(x = x). (F.11)

where the first term takes into account the diamagnetic current contribution and
I (t, x; t',x’) is the paramagnetic current-current correlation function

7 (¢, x; ¢, ') = —i©(t — ') ([JP* (¢, x), P (', x))]) - (F.12)

Performing a Fourier transform in time, Eq. (F.10) becomes
(Ji(w,x)) = /d2xlCij(w,x, x')A;(w,x"). (F.13)

Notice, that K;; is not quite yet the conductivity tensor, as K;; relates the current to
the vector potential instead of the electric field. To make progress we notice that in
the Weyl gauge the vector potential can be written in terms of the electric field as

A(t,x) = —/dt’@(t —tE(,x). (F.14)

Using the integral representation of the Heaviside step function

o(t) = —/ do e (F.15)

27 w + 0+
and writing the electric field as a Fourier transform in time, Eq. (F.14) becomes

dw efiwt
2mi w 4 10+
dw E(w,x)

= | Semiwt X F.1
27°  i(w+i0T) (19

A(t,x) =

/ dt'e“VB(t',x)

From the previous expression we can read the Fourier components of the vector poten-
tial

E(w,x)
A =—7" F.17
X) = o 0% (F.17)
Therefore, the conductivity tensor is related to Hf} (w,x,x") by
.
7ig(e0,3,%) = — o (1 (w5, ) + (1 (0O (x)) dx = X)) . (F.18)



F.2 VERTEX FUNCTION AND WARD IDENTITIES

This is the Kubo formula for the conductivity. Notice that for the Dirac Hamiltonian,
the Hamiltonian is linear in momentum, h;; = 0, and therefore there is no diamagnetic
contribution. However, as we shall soon see, it will be useful to keep this term.

We will be mostly interested in continuous (course grained) models, for which the
conductivity depends on the spatial arguments only via x — x’. In this case it is
convenient to also perform a Fourier transform in the spacial coordinates yielding

rera) = O (80.a) + (whyw)). (¥.19)

Splinting the conductivity into real and imaginary parts we obtain
2
Reo;j(w,q) = —Pq—elmHR(w, q) + 775(w)qg [Reﬂf}(u}, q) + <¢Th¢j'¢>} , (F.20)
Imo;;(w,q) = Pqe ReHR( q) + <¢Thij¢>] + ﬂé(w)qglmﬂg(w,q). (F.21)

The will be interested in the DC limit of the conductivity, which is the current response
of the system to a static, homogeneous electric field, which is obtained by taking the
limits g — 0 and w — 0. We are also interested in the dissipative real part of the
conductivity, which as we can see from the previous equations, contains a possibly
diverging §(w) term. We will see in the following that this term is actually zero.

F.2 VERTEX FUNCTION AND WARD IDENTITIES
F.2.1  Current-current correlation function in terms of a vertex function

The evaluation of the paramagnetic current-current correlation function for an interact-
ing system is most conveniently performed by studying the Matsubara current-current
correlation function and then performing an analytic continuation to real frequencies.
The Matsubara current-current correlation function is defined as

1L, (7, q) = _% (T T (r) 724(0)). (F.22)

We write the paramagnetic current operator as

Z Jk k+q¢k,,\"¢k+q,>\’, (F.23)

where \ is a band/sublattice/spin index. Introducing the reducible current vertex
function

Vﬁ:ii\;(Tl | T ’ TQ) = <T7'Jj1(7—)wk,)\(7—l)wlt+q’>\/ (7—2)> 5 (F24)

the current-current correlation function can be written as
WY FAA
Mjj(rq) = 17 ka R (O 171 0) T A (F.25)

The reducible current vertex function can be written in terms of an irreducible current

vertex, Fﬁﬁ(lj;\; (r1 | 7] 73), as

AN A A .
Veicra(m [ 7 72) = /dT{ /dTéGk Hrn =) T (i | 7| TQ)Gki-q (r3 —72).
(F.26)
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Performing a Fourier transform in imaginary time and writing k = (ikp, k) and q =
(iqn,q), with k, = 2w (n 4+ 1/2) /8 and ¢, = 27n /S fermionic and bosonic Matsubara
frequencies, respectively, the previous expression becomes

AN A1 8, 2 A2, N
‘}~7~) _(!~7 F~7~7~(!~ " F'2
kk+q kO kk+k Tk+q (F.27)

The Matsubara current-current correlation function can thus be expressed as
~ 1 i J
k

with the trace and matrix products taken over the X indices. Now in order to obtain the
retarded current-current correlation function we have to perform the sum over fermionic
frequencies, ik,, and then perform the analytic continuation to real frequencies, ig, —
w +i0T. But before we do that we will prove a result that will turn out to be useful.

F.2.2  Ward identity for the irreducible vertex function

Charge conservation, or in other words gauge invariance, imposes several constrains
and relations between different correlation functions, which are generally refereed to
as Ward identities [246]. We will be interested in the relation, imposed by charge
conservation, between the irreducible vertex function and the self-energies. We will
focus on multiband continuous models following closely the approaches of Refs. [247]
and [248].

Local charge conservation translates into the charge continuity equation

Aip(t,x) + V- J(t,x) = 0. (F.29)

In the following we will be interested in equilibrium systems at finite temperature,
such that it is useful to use the imaginary time Matsubara formalism. Making an
analytic continuation from real time to imaginary time, t — —i7 and 9, — i0;, charge
conservation in imaginary time can be written as

B, J" (7,%) = 0, (F.30)

where we have employed the notation 0, = (i0-,V) and J* = (p,J). The current
operator J* can be written in second quantization in an arbitrary single particle basis
as

JH (7,x) =] (7) Jh (%) (), (F.31)

where the indices a, b label the single particle basis states and we use Einstein conven-
tion, where repeated indices are to be summed over. For the case of a continuous single
band model, using a plane wave basis we would write

1 )
JH(T.%) = 3 DU (T) g qViera(T), (F.32)
k,q

such that ¢« = k and b = k + q. Let us now look at the reducible vertex function
Eq. (F.24) in an arbitrary basis

VA (10| 7% | 7) = <TTJ“(T, x)¢a(Ta)¢g(Tb)> . (F.33)
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Let us take the divergence of V; (7, | 7,x | 7) with respect to the 2 = (7, x) variables.

Taking into account the time ordering operator we obtain

OuVy (ra | 7.5 | ) = (1 = 72) (T [p(7, ), V() ¥} (7))
+i6(r = 1) (Trta(ra) [ (7, %), 6} (m)])
(T 0T (r, X balma) el (1) ) - (F.34)

By the continuity equation, Eq. (F.30), we have that the last term in the previous
equation is zero. Evaluating the equal time commutators we obtain

P73, a(T)] = [BH(T)peaX)a(7), a(T)]| = —pac(x)iie(r), (F.35)
(7,3, 6}(1)] = [6L()pea(x)iba(r), ) (7)| = L (7)ps). (F.36)
Inserting these commutators into Eq. (F.34) we obtain

O Vh (ta | x| 1) = 16(Ta — T)pac(X)Gep (T — ) — 10Gac (Ta — T) peb(X) (T — 3.
(F.37)
Writing the reducible vertex function V(74 | 7,x | 7) in terms of the irreducible vertex
function '), (74 | 7,x | 7) as

Va/;; (TOL | 7, X | Tb) = Gau' (Ta - Té) FZ’b’ (7'(; | T, X ’ 7'(;) Gy (Té — Tb) (F38)
(repeated time variables are integrated over), Eq. (F.37) becomes

Goar (Ta - TZz) 3uFZ/b/ (T; | 7,% | Tl;) Gwo (TI; - Tb) =10(Tg — T)Pac(x)Gep (T — Tp)
—1Gac (Ta — T) peb(x)0(T7 — 7). (F.39)

Acting with inverse Green’s functions both from the left and right in the previous
equation, we obtain

Oty (7o | 7% | 1) = iGo) (Ta — T) pen(x)6 (7 — 73)
— i (1 — T) ,oac(x)G;)1 (tr—m). (F.40)

This is the so called generalized Ward identity. This is valid for a generic multiband
system. By defining all quantities in terms of Nambu spinors, this Ward identity is
also applicable to superconductors (taking into account the matrix structure in Nambu
space of the density matrix elements pg,(x)) [248].

Writing the irreducible vertex function in Fourier components in imaginary time as

1

o (ra | Tx | 1) = =5 Z Th (x5 ik, ik + iqn) e~ thn(Ta=T) o= (ikntign)(T—Ta)

ikn,ign

(F.41)
the generalized ward identity becomes

(@n, V) - TY, (x33k, ihn + i0n) = iGoy (ikn) peb(X) — ipac(X)G ! (ikn +igy) . (F.42)

Notice that this relation must also hold at the non-interacting level, therefore we can
also write

(@0 9) - T2, (%) = G (ikn) pen(x) — ipac()GY ™ (ko +iga) . (F.43)
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subtracting this relation from Eq. (F.42), while recalling the definition of self-energy
G ikn) = (GO (ikn)) ™" = Sap(ikn), we obtain

(an V) : (ng (X; tky, ik, + iQn) - J(l;b (X)) =
= —iSac (ikn) peb(X) + ipac(x) X" (ikn +ign) . (F.44)

For a continuous model, we can also perform a Fourier transform in the spacial
coordinates and the generalized Ward identity becomes

(—ign,q) - T#

-1 _1
kk+q GI; " Pkk+q ~ Pkk+q " GR+@' (F.45)

where all quantities in the previous expression are matrices with indices in the band/-
sublattice/spin degrees of freedom.
We now point out that in the limit @ — 0, we can obtain two useful relations. If we
first set @ = 0, and then take the limit ig, — 0, Eq. (F.45) becomes
9

0. _ -
Tk = 50 G (F.46)

where we have used the fact that pyx = Id. If we set ig, = 0 first and then take the
limit g — 0, and assume we are in a basis where the density matrix elements px x1q
are momentum independent 'we obtain instead

o

Tk =~ 95.Cr (F.47)

Notice that the analytic continuation of Egs. (F.46) and (I.47) can be easily performed
to real frequencies for (iky,, ik,) — (w + 907, w +i0") and (iky, ik,) — (w — 0T, w — i0T).
This fact will be useful when expressing the DC conductivity in terms of the vertex
function.

We finally point that a generalized Ward identity for multiband systems was previ-
ously derived in Ref. [249] using the zero temperature formalism. We also point out
that although we focused on continuous models, it is also possible to obtain similar
Ward identities for discrete lattice models, provided the current and discrete derivative
operators are suitably defined as done in Ref. [250].

F.3 DC CONDUCTIVITY
F.3.1 General expression for the DC conductivity

Armed with the Ward identities we are now in a position to make progress in express-
ing the DC conductivity in terms of the irreducible current vertex function. The first
step is to perform the summation over the Matsubara frequencies in Eq. (F.28). The
sum over fermionic Matsubara frequencies, ik,, can be performed using contour inte-
gration techniques, replacing tk,, — 2, taking into account that the integrand will have

[

For the Dirac model of graphene, this basis would be the sublattice basis, where px x+q is simply the
identity matrix. If we were working instead in the band basis, pk k+q would be formed by overlaps of
the eigenstates, being momentum dependent, and we would have to take into account derivatives of
Px.k+q With respect to q. These extra terms lead to the occurrence of Berry connection terms.
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branch cuts when z and z + ig,, are real. Therefore we obtain (suppressing for now the
momentum arguments)

(i) = = 3 F(2)tr [0 (212 4 i) G 2+ i) JIG (2]
= / 27TZf( v)tr [T (v 40", v +ign) G (v + ign) J'G (v +i07)]
+ / —,f(u)tr [T (v —i0%, v +igy) G (v +igy) J'G (v —i0T)]
/2mf( )tr [T (v — ign, v +i07) G (v +i0%) JIG (v — igy)]
+ / Tmf(y)tr [T (v —ign,v —i07) G (v —i0") J'G (v —ig,)] . (F.48)
Now, we use the fact that for bosonic frequencies f(v —ig,) = f(v), and next make the

analytic continuation to real frequencies iq, — w-+i0". The obtained retarded current-
current correlation function becomes (after restoring the momentum arguments)

Z/Qm — f(v+w)) x

,AR
X tr [Fk W (4 w) G (v w) T WG ()

Z / ) [T (4 0) Gl (v 4 0) 1 G ()]

+VZ/2m,f(y+w)tr [I‘f{’fﬁq(y,y—kw)GﬁJrq(u—l—w)JkﬂlkGA( )}
k

(F.49)

with I‘f(’;f_q (Vv +w) =Ty q (v =107, v+ w+1407) and similarly for the remaining
terms.

We are interested in the homogeneous DC conductivity, corresponding to the q — 0,
w — 0 limits. These limits can be taken unambiguously in the third and forth lines of
Eq. (F.49). Using Eq. (F.47), the second line of Eq. (F.49) in the @ — 0, w — 0 limit
can be written as

-y e R e GE 0 RG] =
= % Z tr [%Gf’l(V)Gf (v) T i G (V)]
_ —*Z“ {8‘2 GE(v J{{k] = Ztr [Gk 3 Jlik] (F.50)

where from the first to the second line of the previous equation we used that 0G~! =
-G (8G_1) G and in the last line we used integration by parts. Now, going back to the
definitions of paramagnetic and diamagnetic current operators, Eqgs. (F.8) and (F.9),
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we identify O, JIZ K s the matrix element h¥. Proceeding in the same way for the forth
line of Eq. (F.49) and joining the two contributions we obtain

73 [ it (6t - w0l -
Z/Qm tr Ak( )hff,k] :—<¢Thﬂ'j¢>, (F.51)

with the spectral function given by Ak (v) =i (GE(v) — G{(v)). Notice that Eq. (F.51)
will exactly cancel the diamagnetic term in the conductivity Eq. (F.19). This in an
extremely important result: it guarantees that the §(w) term in the real part of the
conductivity Eq. (F.20) is actually zero. If this cancellation did not occur, the conduc-
tivity would have a term of the form o « (w + z'OJr)f1 diverging in the DC limit, i.e.
we would have a perfect conductor.

With the cancellation of the diamagnetic term, the real part of the conductivity,
Eq. (F.20), reduces to

2
Reoij(w, q) = —Pq—elmﬂg”-(w, q). (F.52)

In the w — 0, from Eq. (F.49) we obtain for ImIT% +(w,0)
R J—

lim ImITfj(w, 0) = WVZ/ (

+wVZ/ < )Rt T ) G0 F Gl )]

(F.53)

DY tr [ ) G ) 9,6 )]

The first term of this equation involves the product of a retarded and an advanced
Green’s function, while the second involves the product of two advanced Green’s func-
tions. We also notice that using Eq. (F.47), the second term can be rewritten as

N EAC

) Retr [Gﬁ (v) F;’;;‘(A (v,v) G (v) Jlik} _

53[5 (-7 e

For weak scattering in a metal, the second term should be suppressed with respect to
the former by a factor of ( scat F) , where 753 is the scattering time and e is the
Fermi energy [54, 234|. Therefore, we neglect the second term, obtaining the following
expression for the DC conductivity

oDC = Z/ <

At low temperature, we can approximate the derivative of the Fermi function by a
O-function. In this low temperature limit, and assuming there is a single band crossing
the Fermi level, we can treat all the quantities in the above expression as scalars. Using
the fact that

G

oI}
k| (F54
ok, ] (F.54)

) tr [r;‘;fl‘f () GEW) JLGL ()] . (F.55)

G (v) Gie (v) = T () Ax(w), (F.56)
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= ° +

Figure F.1: Diagrammatic representation of the Bethe-Salpeter equation for the vertex func-
tion, Eq. F.61, in the ladded approximation. The Triangle represents the irreducible

vertex ,l"i; PPT the dot represents the bare vertex, Jl?{ frq the directed double
straight lines represent the Green’s function, G, and the coil-like line represents
k,k+4+p

the effective interaction U->" 277,
k+p.k+q

(which strictly speaking only holds in the single band case), with the scattering time

given by 1/75¢(w) = —2Im%f(w), and approximating the electronic spectral function
by
Ar(w) =i [GE (v) - Gy (V)] =270 (w — &), (F.57)
the expression for the DC conductivity becomes
2
Reagc o~ Ve (— J(;( k)> Tﬁcat(ek)Fi(’iR (ex, €x) Jf(’k. (F.58)
K “k

If we replace the irreducible vertex by the bare current matrix element, I’i{’iR (ex, €x) =~

Jlik, then the DC conductivity would be given by

2

qe af(ﬁk) sca % j

Reagczv (- g )™ “(e10) TS (F.59)
k

which is of the form of the Boltzmann result to the DC conductivity, except that in
the Boltzmann approach the expression for the conductivity involves not the scattering
time, but the transport time, which encodes the fact that forward scattering does not
lead to a degradation of current. In what follows we will see how this apparent deficiency
of the Kubo approach can be solved by tacking into account interaction corrections to
the irreducible vertex function Fi{’iR (ex, €x)-

F.3.2 Bethe-Salpeter equation for the irreducible current vertex function

As we previously said, the expression for the DC conductivity should involve the trans-
port time and not the scattering time. In order to take this into account it is necessary
to include the effect of interactions into the irreducible vertex. We will consider a
general electron-boson interaction of the form

He b =Y i dkirqira (F.60)
k,q

where ¢y k4q is a bosonic field and we have included any additional indices in the
momentum variable. We have expressed the interaction Hamiltonian in terms of fields
expressed in Fourier components, but more generally k and k+q can be seen as labels of
a generic single particle basis. In the presence of this interaction and in the non-crossing
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or ladder approximation, the Matsubara irreducible vertex obeys the Bethe-Salpeter
equation

: Jt - k k+q+p
Ff(,f(—f—f} l~( l~(+ BV Z Gk+p k+p k+q+ka+q+p k+p k+ (F61)

where we have introduced the effective interaction as

B
k.k iPnT
Uk+;1(:_rg /0 dre™™ (I7 Pk k+p(T) Pkt qtpk+a(0)) (F.62)

which actually only depends on the Matsubara frequency ip,. The Bethe-Salpeter
equation is represented diagrammatically in Fig. F.1. We point out that the Bethe-
Salpeter equation (I.61) is compatible with the generalized Ward identity Eq. (F.42),
provided the self-energy given by [248§]

kk+p
Z Uk+p II: k+p- (F.63)

In order to solve Eq. (F.61) to obtain I‘i(iR (v,v), the first step is to perform the sum

over the bosonic Matsubara frequency ip,. This can be done changing to the complex
variable ip, — z and noticing that the integrand will have three branch cuts in the
complex plane: when z is real, ik, + z is real and when ik, + iq, + z is real. Performing
the contour integration, we obtain six different terms, which after analytic continuation
to real frequencies, ik, — v —i0" and ik, + ig, — v + w + 0", can be written as
(suppressing the momentum arguments for simplicity)

reAR (v,v 4+ w) — Jh=

:/;;b( )G e+ )T (et vy v 4 w) G (e v+ w) UT (€)

—i—/ de b( )GA (e + )T (et v e+ v+ W) GE (e 4+ v +w) U (e)

/2d (e+ )G e+ )T B (et v e+v+w)GR(e+v+w)UR(e)

de
2— (e4+ )G (e+ )T (et v e+ v+ w)GE (e 4+ v+ w)UE ()
i

/2d fle+v+w) G (e4+) T e+ v e+ v+ w) G (e+ 1)U ()
—i—/Qif(e—l—u—l—w)G (e+)TA (et v e+v4+w) Gl (e+v4+w)UA (e) (F.64)
7r

Taking the limit q — 0, w — 0 and collecting all the terms involving I'»4%  we obtain

. .
Ff;kR(V V) = ek =

dl/ i

d I
Z/ ‘ G_V +f( )]Gk+p() kig,k—i-p(e’e)GE-ﬁ-p()Azll:ig, (E_V)’

(F.65)
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where we introduced the spectral function for the interaction mediating boson as

kk+q+ kk+q+ , kk+q+ .
ABITR () =i [UISTR (w4 10%) — USRI (0 — i07)] (F.66)

with Ull{( f;r Ej_rg (w +10™") obtained by analytically continuing Eq. (F.62) to real frequen-
cies, ip, — w +107. Using the Ward identity Eq. (F.47), we can rewrite the first term

on the right hand side of Eq. (F.65), obtaining
i,AR i
Fkk (Vay)_'Jkk::
dv kk+p,A
::_722 f mlakGHp(ﬂ&mk (e—v)| +

#5525 e )+ O Gy (T 60 Gl (0 5K (=)
(F.67)

The first term on the right-hand side of the previous equation leads to a correction of
the bare current matrix elements, Jli( k- Similar terms also appear when employing the
Kadanoff-Baym equations [57] or a Markov quantum master equation [251], but are
generally ignored in the classical Boltzmann equation. In the following we will neglect
such effects and obtain

ZAR(I/I/ Jkk— Z/ €) + fle+v)] x

AR I k+
><Gk+p(€—|—V)Fi+p’k+p(E—{—I/,E—{-I/)Gllf_i_p(e—l—V)A¢k+gk( ).

(F.68)

The final step in order to obtain the DC conductivity of a metal in the presence of
scattering, is to solve the previous equation for F;’?(R (v,v) and insert the result the
result in Eq. (F.55).

F.3.3 DC conductivity for quasi-elastic scattering

We will now solve the Bethe-Salpeter equation for the irreducible vertex function,
Eq. (F.68), in the weak quasi-elastic scattering approximation at low temperatures.
First we notice that in Eq. (F.55), the derivative of the Fermi-Dirac function imposes
that only energies and states close to the Fermi level will give a relevant contribution.
We are interested in the case where there is a single band crossing the Fermi level, and
since we are considering the low temperature, quasi-elastic scattering limits we can
focus on that single band. With these approximations we can use Eq. (F.56) and ap-
proximate the electronic spectral function by a d-function, which means we can focus on
the irreducible vertex function only on the on-shell case, v = € (with € the electronic
dispersion relation). These considerations allow us to approximate the Bethe-Salpater,

Eq. (F.68), by

de
T (e a0) = s = VZ/ (€) + Fle+ @ T s e+ cae+ 1) x

X Thh (e + €x) Aryp (€ + 1) AP L (6). (F.69)
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After integrating over energy using the electronic spectral function we obtain

1

i, AR ; i AR
Iy (e e) = e = v D blecip — ) + Flacrp) Titpasp (Ctps fiip) X
P
k k
X it (actp) AZK p e (Gerp — 1) (F.70)

Assuming the system is isotropic we can write

i

: k
i, AR —_
Ny (vv) = K| e Ex(v), (F.71)

and after contracting Eq. (F.70) with k?/ |k| we obtain an equation for the quantity
Ek(v)

— 1
[Tk k| Zx (k) — [Jek| = v Z [b(exsp — €x) + f(exyp)] €O Oi kip X
P

= 5 kk+
X [ Jitpktp| Ektp (€ktp) Tﬁia;t) (€k+p) A¢,k+f§,k (ex+p — €k) -
(F.72)

For quasi-elastic scattering we have that ey, ~ €, which at low temperatures both
become pinned to the Fermi energy. Therefore we can write |Jxypkipl = [Jkkls
Ek+p (€xtp) =~ Zk (ex) and Tli‘jf;“) (ek+p) = T3 (k). With this approximations Sk (ek)

can be written as

1
1 — 7ot (ex) I (ex)’

Ek (&) = (F.73)

where

1

he(e) = 57 > [betp — ) + flertp)] cos Oacrp AP | (ecip — ). (F.74)
P

We point out that the scattering time is given by

1

1
scat = —QIme(w) =3 Z [b(€k+p - 6k) + f(ek-i—p)] A;:ll:igﬂ( (ek-i—p - Ek) .
T (ek) Vv

° (F.75)

If the transport time is introduced as

1 1
== > (1= cosOserp) Dlexip — €10) + f(ererp)] AGIE 1 (eerp — €)
() V =
(F.76)

or equivalently

1 1
== Z / dw (1 — cos Ok k+p) [b(w) + flex +w)] Ag:lﬁigyk (W) 6 (w — exyp + €x)
Tk (ex) 4 o
(F.77)
then Eq. (F.73) can be written as
tr
= Tie (€K)
B () = LK F.78
(00 = g (£.73

Therefore, in terms of the transport time the irreducible vertex, Eq. (F.71), is given by

tr
i AR o e (e)
]'_‘k,k (V, V) = Jk’km' (F?g)
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Inserting this expression into Eq. (F.58) we obtain the final expression for the DC
conductivity in the case of weak quasi-elastic scattering

2
de 8f(€k r i j
Reagc ~ 1 (— e )> 8 (ex) k’ka(,k. (F.80)
k

Inclusion of vertex corrections change the scattering time by the transport time, such
that the Kubo approach describes the same physics as the Boltzmann approach.

Notice that in the derivation of Eq. (F.79), we had to make the approximations

i, AR i, AR
Ty oarp (Ektps ekp) = TR D1 (6 ) and 73 (exip) = 7 (ex). As a matter

of fact such approximation is not valid for scattering by acoustic phonons [252] and

the slight inelastic nature of scattering by acoustic phonons can become important.

However, the inelastic effects only becomes important at very low temperatures and
for higher temperatures the quasi-elastic approximation becomes a good approximation
[155].

Focusing on the transport at the Fermi energy, setting ex = ep, Eq. (F.77) reduces
to

k}F) — o 2 [ (1= 08 Bcscp) ) + £ AEKTE . ()6 ek~ k)
P

1 dw
-3 / i 5y (1 o8 Prierp) AR ()6 (e — ercsp) . (F81)
1Y

This result is to be contrasted to the standard Ziman’s formula for the transport time
[95], which reads instead

1 1 dw k. k+
— e = ——Bw (1l — cos b A p w)o(ex — € .
7_lt(r,Zlmam (ﬁF) v Zp:/ Asinh (6&]/2)2[3 ( k,k-H)) ¢>,k+p,k( ) ( k k+p)
(F.82)

In the high temperature limit, Egs. (F.81) and (F.82) coincide. On the posit limit, the
result from the two expressions differs. However, as we have previously discussed, in
the low temperature limit, neither equation can be trusted, as both are based on a
quasi-elastic approximation. It is however useful to track down the difference between
Egs. (F.81) and (F.82). Notice that by using the equality

1— flex +w)
b(w) + flex +w) = —5 " “ph(w), F.83
@)+ fac+o) = 22D ) (F.83)
Eq. (F.77) for the transport time can be expressed as
1 1 1 — f (éxtp) Ikt
o= > (1 cosb LA =y 2] — ) ARKP — ).
W ea) V (1 — cos i jetp) 1= f (ex) (ictp = 1) Agicip i (Gerp — )

P
(F.84)

Using identities of the Fermi-Dirac and Bose-Einstein functions we can also write

1 — f(exip) . f (exyp) — f (ex) o .
1= fla)  flag (= flag) \* %) (F.85)

and therefore Eq. (F.84) can be written

1 (1 — eos f(ex +w) — f(ex)
eV Z/ ol = eoshoen) 7 () (1= 7 ()

k.k
X Aq&,kig,k (W) 6 (w— exqp +ex). (F.86)

b(—w)b(w) x

—~
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Using the fact that for quasi-elastic scattering we have that e, ~ €y, we can make
the approximate [253]

flex+w) — f(ex) = wag;k)

=~ @) (1= f (). (F.87)

such that

1 1 9b(w) k.k+
m = V/dwzp: (1 —cosOx ktp)w < % ) A¢7k+g7k (W) 0 (W — €xtp + €x) ,
(F.88)
where we have used the fact that b(—w) b (w) /kpT = 0b(w)/0w. This result is exactly
the same as Ziman’s result Eq. (F.82).



BOLTZMANN EQUATION APPROACH TO COULOMB DRAG

In this appendix we present a derivation of the drag conductivity between two plates
using the Boltzmann equation. We will closely follow the derivation done in Ref. [160]
but generalizing the result for a multiband system.

We assume that the electrons in each layer, £ = 1,2, are characterized by a band
dispersion given by € » ¢, where k is the momentum and A is a band index. The electron
wavefunctions are given by

D e(x) = jzk 1k, ), (G.1)

The electrons of the two layers interact via the Hamiltonian

1 Az Az + t
Hipter = Z Z Vio (Q) p171k+2q7k02?k/jq7k/Q;karq,)\l71¢k1_q7)\3’ka/,)\4,2wk,)\2,17 (GZ)
kk',q,\;

where ¢1T( )¢ creates an electron in layer ¢ with momentum k in band X, Vi2 (q) is the
bare interlayer Coulomb interaction, which for two metallic plates in vacuum is given

by
e? d’x  e™xd e?
% = = ~lald G.3
12 (a) 47eg / (2n)? [x2 +d?|  2e]q] ¢ ’ (G3)

with d the separation between the two layers, and pz\tqu = (k+q, A1 | k, \2), are
wavefunction overlap factors.
The Boltzmann equation in the DC limit, for the coupled layers reads

e1 Onk a1

% 1 ok = Iimp [nl]k,\ + Iinter {nla n2]k7)\ 3 (G4)
e on

% 2" akl:uQ = Ijmp [nZ]k7/\ + Iinter [77/2, nl]k)\ I (G5)

where we have denoted the Boltzmann distribution function for electrons in layer ¢
as nk a1, € is the charge of the quasi-particles in layer ¢, Iinp [n]) , is the intralayer
collision integral due to impurities and lipger [121, ng]k, \ is the Collision7integral due to the
interlayer interaction Eq. (G.2). We neglect effects of intralayer interactions, assuming
that the intralayer scattering is dominated by impurities. Assuming that impurities
from different layers are uncorrelated, the impurity collision integral is given by

2T RN
Liwnp [y = —— > Nimpye ‘T(/?k ‘ 8 (acne —eaene) (Meae —mwae),  (G.6)
k/
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208 BOLTZMANN EQUATION APPROACH TO COULOMB DRAG

where ninp, ¢ is the impurity concentration in layer £, T(f)l’j is the T-matrix due to the
impurity potential and we have assumed that there is no interband scattering. The
collision integral due to the interlayer interaction is given by

2

0) A1, A3,A2
Ilntra [nf, nf’ k, X" T a9 Z ’U12 ( k+q A 6k )\7 ’05 Jk+q.k pﬁ’yk’—q,k’
k’'.q
(0 (&) (0) ()
X (5 <6k+q )\1 + Ek/_q7)\3 - ek,A - 6kl}>\2 X

X [nk,)\,énk’,)\g,é’ (1 — nkgga ) (1 — Nkgqa )

— (T =g (1= p) nk+q,A1,enk+q,A1,z] . (G.7)

where Uf (w, q) is the screened, retarded interaction which we have allowed to depend
both on the transferred momentum as well as in the transferred energy. This will gen-
erally happen once we consider dynamical screening of the bare interaction, Eq. (G.2).

We are interested in the linear response of the system to the electric field applied in
the active layer, Eg. Therefore, we write the distribution functions as an equilibrium
term, which is just given by the Fermi-Dirac distribution function n?( e = flegae),
plus a correction term as o

nieae =g + e (1= niag) Proa (G.8)
In terms of ¢k ¢, the impurity collision term, Eq. (G.6), can be written as
’2

Ilmp [‘P@ = Z Nimp,¢ ‘ K’ k ) o (ek,)\,é - 6k’,)\,é) X

xnp e (I =npae) (Pere — ewne) (G9)

where we used the fact that nﬂ,M (1 — n%)\l) = nﬁ/’u (1 — nﬂ,yu) for ex )¢ = exw s
Expanding Eq. (G.7) to lowest order in ¢k ) ¢, we obtain the linearised interlayer inter-
action collision integral

T = U Ap,A 2| Xao 2
inter [(Péy wf’]k,/\ = Azﬁ ‘ 12 €k+q,>\1,£ €k, N\, 05 q Pe tak| [Pox—qk
k'.q
A1,A2,A3

0. 0 0 0
X e (1= Mg ae) Mo doer (1= g 00)
X [cpk,u T Ok Aol — PhtqAi,l — SOk’—q,Aa,f’]
X 6 (€xtqri,t + E—qrs, ¢’ — €KL — € ) s (G.10)

where we used the fact that the equilibrium distribution functions satisfy the condition

n%,)\,énloc’,)\g,é’ (1 - n?{Jrq,)\l,f) (1 - ”locuq,,\g,é') =
= (1= mae) (1= Mo ag0r) Mg £M—gg s (GH11)

for exqqn ¢+ €k—q g0 = €k 20 €k 2, - Therefore, the linearised coupled Boltzmann
equations are given by

6n% b1
e1Eq - Vk,)\,lﬁ = Limp [p1]y  + Linter [1, P2]3 5 » (G.12)
€k, )\, 1 ’ ’
871&
2By - Vie a2 5= = Timp [02]ic » + Jinter [02, 1)1 » (G.13)

Oek \ 2

17Ny



BOLTZMANN EQUATION APPROACH TO COULOMB DRAG

We are interest in the case where layer 2 is the active layer and layer 1 is the passive
layer and want to study the linear response to the electric field applied in the active
layer, Eo, while not allowing the flow of current in the passive layer, J; = 0. Therefore,
and to lowest order in the interlayer interaction, we neglect the interlayer interaction
collision term, Iipter [9027901]1(,» in Eq. (G.13) and set ¢k x1 = 0 in finger [gol,gog]k)\ of
Eq. (G.12). Therefore, we obtain the simplified equations

on 0

e1Er - v 8ek AL = Fianp [P1]ix + Jinter [91 = 0, 2y 5, (G.14)
On ?mz

e2Bg - vy 2= = Timp [p2]) - (G.15)

Oex x 2

Now the strategy to follow is clear. First, we solve Eq. (G.15) to obtain ¢k x2 as a
function of Eo. Then, we plug in the obtained result in Eq. (G.14) and solve it for
¢K,\,1- Having obtained ¢y ) 1, we can compute the current in layer 1.

Notice that by treating the impurity collision term Iimp ], \ as a linear operator the
solution of Eq. (G.14) can be formally expressed as 7

-1 8”?{,)\,2
P2 = iy |€2B2 - Viea . . (G.16)
kA2 |y
More explicitly, noticing that
0 0
8n?{’,\72 _ _”k,,\,z (1 - ”k,m) (@17)
861(7)\’2 kT ’ '
Eq. (G.14) can be written as
€2 2),A o) (0)
kBTEz “ VA2 Z nlmpe )T ‘ (E kA - 6k’,)\> (Spk,)\,Q - @k’,)\,Q) . (G18)
Making the ansatz
Pler2 = TTk,\2 K2+ Ba, (G.19)
and assuming isotropy, we obtain that the transport time, 7*, ,, is given by
1 4 l
anmpg ‘T ’ ’ 1 — COS 0k k’) ) (61(())\ — 61((,)>\> . (GQO)

Tk)\2

Notice that the transport time, differs from the scattering time by the (1 — cos 9k7k/)
factor.

Using the result from Eq. (G.19) in Eq. (G.14), we can write the interlayer collision
term as

2
)\1, )\37>\2
Tinter [p1 = 0, 2] \ = A2h § [Ur2 (ex+a,01,1 — €x,0,159)] ‘Pl Ktq,k ‘ ’Pg}k/_qykf
K',q
A1,A2,A3
0 0 0 0
X Mieat (1= Mepgann) Mo sg2 (1 - nk’—%)\s,?)
X 6 (€xtqri,1 T Ek—qrs,2 — EkAT — €K/ A02)
€2 tr tr
X = [T 22V A2 — Tho—quag 2Vi—aha2] - B2 (G.21)

kgT

2
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210 BOLTZMANN EQUATION APPROACH TO COULOMB DRAG

Using the identity
fler) (1= fle2)) = (f(e2) — fle1)) b(er — €e2) (G.22)

and writing

g (6k+q,>\171 T ek—qAs2 ~ kA1 T 61(’,)\2,2) =

= /dw5 (Ek+gr,1 — €kA1 — W) 0 (ekz)\zg — g As,2 — w) , (G.23)

we can rewrite Eq. (G.21) as

€2
Linter [901 :07902]1(,)\ = _kBiTﬂ Z /dw’UH w,q ‘

>\17>\2,/\3
2
A )
’m Yo, k‘ 6 (kg1 — ka1 — W) (f (ex+aa,1) = flexa)) b (w)
2
A3,
‘pﬁ;/iq,k, 0 (e n02 = E—gs2 — W) (flew—ang2) = flew 22)) b (~w)

tr tr
X [Tk/,,\Q,QVk’,AzJ - Tk’—q,)\3,2vk/—q7>\372] ‘Eo. (G.24)

Now, we notice that from Eq. (G.14), the solution to ¢k x 1 can be formally expressed
as

_ 71

on?
kA1
e1Er - viea Der1 — Linter [p1 = 0, 902]1(7)\ ) (G.25)

which leads to

0

tr
Tk, Oy »,
! ) <€1E1 ‘Vk,,\,lﬁk1 — ITinter [1 = 0, (,02]1(7/\) . (G.26)
b 71

0 0
LSV (1 M

PrA1 = —

The current in layer 1 can be written as

3 =23
1= — VKA 1Tk 1
A

€1
'y Z Vi1 (1= 1) Preas: (G.27)
K\

Inserting Eq. (G.26) into Eq. (G.27), we can write the current J; as

(32 8 €
Ji = Zl > <_M) Tiea1Vient (Vieat - Ei)
kA

Oek 1
€1 r
+3 ;Vk,,\,ﬂﬁ,)\,lfmter [p1 =0, 92y - (G.28)

If we now use Eq. (G.24) to express [ipter [¢1 = 0, (pg]k’)\, the second term of the previous
equation can be written as

€1 tr
v E Vk7,\,17'k’)\,1linter [‘Pl =0, ‘PQ]k,)\ =
Y

- 2;}:;Tm Z/d“’b ~w) [Urz (w, @)* Al (w, @) (Az(w,q) - Ez), (G.29)
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where we have introduced the quantities

A Z ’ P1 k+qk’ Vk,/\717'1t<fx,1 (f(€k+q,/\/,1) - f(€k7/\,1)) X
kAN
X 0 (Extqn,1 — EkAl — W) (G.30)
27T
As(w,q) Z ’ 2k qk’ ka)\,2vk,)\,2 - Tlir_q,x,zvk—q,x,z} (f(ﬁqu,,\/,z) - f(ﬁk,,\,2)) X
kAN
X 0 (Ek,)\g — €k—q,\,2 — w) . (G.31)

Comparing Egs. (G.28) and (G.29) with the linear response relation
Ji=o011-E1 + 012 Eg, (G.32)

we identify the first term of Eq. (G.28) as the usual intralayer conductivity given by

ij € Of (exa1 .
1]1: 1Z< Oex a1 ) ltklvkklval’ (G.33)

and the second term as the transconductivity given by
ij €1€9 21 1 2 % .
b= 12 | el B ablea. (30

No we make some further manipulations. First, we notice that by replacing k — —k,
Eq. (G.31) can be written as

27r
r tr
As(w,q) Z ’ Pajcrak ‘ [ 2Vickan2 = Ty 2Viea 2] X

k AN
X (f(eran2) = flan2)) 0 (w+ ecrane = exrz2) - (G-35)
Next we notice that Ay(—w,q) = —As(w, q), which can be seen by replacing w — —w
and then making a shift in the integration variable k — —k — q and noticing that
E_k N2 = €k )2, Tirk7A72 = Tg/\g and v_g y2 = —Vik 2. Since the quantities b (w) b (—w)

and Uy (w, q)\2 are even functions of w, only the even part of the quantity A’l (w,q)
will contribute to the transconductivity. Therefore we can replace

Al (w,q) > Aj(w,q) - A( w,q) _

tr tr
Z ‘P1 —k,—k— q‘ (Vk+q,A,lTk+q,A,1 —Vk,A,lTk,AJ) X
k AN

X (f(6k+q’)\71) — f(6+k7)\/71)) ) (w + €k4g.)\1 — 6k7)\/’1) . (G36)

Therefore, we obtain the final Boltzmann result for the transconductivity
g 2 A1 j
R Z [ b @) (o) Uz @ @) A w M), (G3T)
with the functions Ay(w, q) defined as

tr tr
Ay(w Z ‘ Py k+q k‘ Tkt-q,M, e Vk+q,\ £ — Tk,,\,zvk,M) X
k AN

X (flexrqn,e) — fexne)) 6 (w+ exiqr,e — expne) - (G.38)
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We conclude, by noticing that Ay(w,q) corresponds to the Boltzmann limit of the
non-linear susceptibility of layer ¢, which gives the second order current response to an
applied potential [161, 162].



INTRODUCTION TO THE NON-EQUILIBRIUM GREEN’S
FUNCTION FORMALISM

The non-equilibirum Green’s function (NEGF) formalism is an extremely powerful
framework for the study of systems driven out of equilibrium, while taking into ac-
count both coherence and interaction effects. Although this formalism is not a recent
development in theoretical physics, having been well established by Kadanoff & Baym
[254] and by Keldysh [255], and with several good books having been published in recent
years [56, 57, 256, 257|, the NEGF formalism is still not part of the standard toolbox of
most condensed matter theorists. As such, this appendix provides a brief introduction
to the formalism. The NEGF formalism is extensively employed in Chapter 6.

H.1 THE SCHWINGER-KELDYSH AND KADANOFF-BAYM CONTOURS

Suppose we wish to compute the expectation value of an operator, O, for a system that
is governed by a time dependent Hamiltonian,

H(t) = H0+Hint+v(t)7 (Hl)

where Hj is an easy free Hamiltonian, Hi, describes the interactions and V (¢) is a time-
dependent perturbation, which is assumed to the zero for ¢t < to. In the Heisenberg
picture, the expectation value of the operator O for times t > ty is given by

(0) (t) = Tr (p(t)O)) (H.2)

where p(tp) is the density matrix, describing the state of the system at the initial time
to, and O(t) is the operator in the Heisenberg picture, which evolves as

O(t) = Ut (t, t0)O(to)U (¢, to), (H.3)

where O(tg) is the operator at ¢t = o (where all representations coincide) and U (¢, ')
is the evolution operator, which obeys the Schréodinger equation

0

o Ut = —iH (U (.1, (H.4)
({;U(t, ) = iUt ¢)H (1), (HL5)

with the initial condition U (t,t) = Id. We introduce the S-matrix
S(t,t') = oty (¢, ¢/)e~H(t'=to), (H.6)

which obeys the Schrédinger equation

o N ,
o5 S(1) = =W S (L), (H.7)
%S(t,t’) =iS(t, " YW(t), (H.8)
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with ' '
W (t) = e Mot=10) (Hyyy + V(1)) e Holi=1o), (H.9)
and the initial condition S(¢,¢) = 1. The Schrédinger equation together with the

initial condition, allow to formally write S(¢,t’) as a time-ordered or anti-time-ordered
exponential

T} exp (—z’ ¥ dt”W(t”)) , >t

S(tt)y=4¢ , . (H.10)
T} exp (—i N dt”W(t”)) L t<t
The expectation value of the operator, Eq. (H.2), can then be written as
(0) (t) = Tx (p(t0) S' (¢, 10)O(1)S (1, 0) ) (H.11)

where we have introduced the operator in the interaction picture, which evolves with
the free Hamiltonian, Hy, as

O(t) = eot=t) O (tg)e - Holt=to), (H.12)

We now focus in the case when the initial state at ¢ = ¢y is a thermal equilibrium

state
’ e—B(Ho+Hing)

TI' {e_ﬁ(HO"FHint)} ’

Since at tg we have V (tp) = 0, we can write

p(to) = (H.13)

E_B(H0+Hint) =U (to - z/BatO)
e*’BHOS(to —i83,10), (FL.14)

and the expectation value of O at ¢ can be written as

~ Tr (e7FHoS(tg —if, 10) ST (t, t0)O(t)S(t, to))
(0) (1) = Tr (e—PHOS (to — 1B, to))

_ (S(to —if,t0)S(to, 1) O(t)S(L, t0))g

(S(to —1if,10)) 7

where (....); = Tr (e #H0_..) /Tr (e7#H) is the average with respect to bare theory.
Notice the ordering of the operators in Eq. (H.15) from right to left: in S(¢,%9) the
operators appear time-ordered from ¢y to t, then we have an insertion of the operator
O(t), followed by S(tg,t) where the operators are anti-time-ordered from ¢ to ¢y and,
finally, S(to — if3,tp) introduces operators ordered along the imaginary line from ¢y to
to — i8. Introducing the Kadanoff-Baym [254] or Konstantinov-Perel’|258] contour as,
see Fig. H.1,

(H.15)

cr = [th +OO[ U }+Oo,t0] U [tUatO - Zﬁ] ’ (H16)

then Eq. (H.15) can be written as

(Sc+(to — i, 10)O(1)),
(Sc+(to —if,t0))g

(0) (t) = (H.17)

where

Sc-(to — iB,to) = Tew exp (—i / * dsW(s)> , (H.18)



H.2 CONTOUR-ORDERED GREEN’S FUNCTIONS AND DYSON EQUATION

C*

—+00

to — 8

Figure H.1: The Kadanoff-Baym or Konstantinov-Perel’, C*, and the Schwinger-Keldysh, C,
time contours.

with T« is the contour-ordering operator along C* contour, which is defined as

Te- (A(s)B(s) = A(s)B(s') , if s > ¢ along C* ’ (1.19)

+B(s")A(s) , if s < s along C*

where s, s’ are defined along C* and the order= is defined with respect to which quantity
appears later/earlier along the ordered contour C*.

If one is not interested in the transient behaviour due to the turning on of the time
dependent perturbation V (¢) and the system loses memory of the initial time (as it is
true in general due to interactions or due to coupling to external reservoirs), then it
is possible to neglect the contribution from the imaginary contour and take the limit
to — oo, working instead in the Schwinger-Keldysh contour, see Fig. H.1,

C = ]—o00,+00[ U ]|+00, —00]. (H.20)
In the Schwinger-Keldysh limit, Eq. (H.17) becomes

_ (Sc(=00, =0)O(t))g

(0) () = T sy (H.21)

o Sc(—00, —00) = T exp <—i/CdSW(s)> , (H.22)

with T the contour-ordering operator along C', which is defined in the same way as
Eq. (H.19).

H.2 CONTOUR-ORDERED GREEN’S FUNCTIONS AND DYSON EQUATION

Equations (H.17) and (H.21) suggest introducing contour-ordered Green’s function
along the C* or C contours. We will now work on the Schwinger-Keldysh limit and
introduce the C-ordered Green’s function as

i (TeSe(~o0, ~00)pa(s)e}(s")

N A ATray\
G%(S,S)——%<Tcsoa(s)sob(s)>——ﬁ ToSo(—o0. o), 0 (H.23)
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T

where g is a one particle bosonic/fermionic creation operator in a one-particle state a
. Notice that the contour ordering operator T reduces to the time-ordering operator,
if both time arguments s and s’ belong to the Cy = |—o0,+oo[ branch of the C
contour, and reduces to the anti-time-ordering operator if both time arguments belong
to C_ = |4o00, —oo[. Therefore, depending on the position of the time arguments in
the C contour, the contour ordered Green’s function, ng(s, '), reduces to the usual
real time Green’s functions defined by Eqgs. (A.4)-(A.7):

Go(ts 1) = —% <wa<t+>¢>l<t’+>> =G (1), 1t € Cy, (H.24)
GS(t_,t' )= —% < ’tgba(t,)@j)(t’_)> =GT, (t,t),t_,t_ eC_, (H.25)
GG (ty, 1) = ;% <¢Z(tL)¢a(t+)> =G5 (t,t), ty € Cy,t_eC, (H.26)
GG (t_,t,) = —% <¢a(t,)¢;§(tﬁr)> =G, (t,t), t- e O_ ¥, € Cy, (H.27)

where t1 indicates if the time argument belongs to the Cy branch of the C' contour.

Just as in equilibrium theory, the appearance of (TcSc(—00, —00)), in the denom-
inator of Eq. (H.23) ensures that in a perturbative expansion of G(%(s, s') the linked
cluster theorem is satisfied, that is, vacuum diagrams cancel in any calculation. This
allows to write a Dyson equation for G (s, s')

G(%(S, 8/) = Gg;o(s, Sl) +/ dSlGS(;(,)(S, Sl)va’b’(sl)Gb’b(Sl, S/)
c

+/dsl/dsng;?(s,sl)Egb,(sl,sz)ng(SQ,s'), (H.28)
C C

where Gac;;o(s, ') is the free Green’s function, Vi, (s1) is a (possibly time dependent)
single-particle potential and anb,(sl, s9) is the self-energy. All time arguments are de-
fined in the C' contour and repeated indices are summed over. It is useful to distinguish
the branch to which the variables s and s’ belong as an additional index in the Green’s
function, writing the Green’s function as a matrix in Keldysh space as [255]

Ga(t, 1) = (H.29)

GL(t, 1) Gg(t.t) ] |
G (t,t) GT(t,1)
With this notation and writing the integration along the C' contour as fc dsf(s) =

fj;o dt (f(t4+) — f(t-)), it is possible to write the Dyson equation, Eq. (H.28), in matrix
form as

“+o00
Qab(tv t/) = ng(tv t/) + / dtlgga’ (tv tl) ) Ka’b’ (tl) ’ Qb’b(tlv t,)
“+oo “+o00
+ / dtl / dtQan/ (t, tl) : Za/b/ (tl, t2) . Qb/b(t27 t/), (HSO)

where V ,;(t) the single-particle potential in Keldysh space has the matrix structure
Kab(t) = Q3Vab(t)a (H31)
with o3 the Pauli matrix in Keldysh space

O3 = [ (:; _01 ] , (H.32)
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and the self-energy in Keldysh space is given by

‘ st t) =5(tt)

Z(1b(t7tl) = 03 I
(1) St t)

(H.33)

It is possible to write the Dyson equation in the C contour, Eq. (H.28), in a more
compact form, by introducing a “covariant” notation, in which the Green’s function,
Eq. (H.29) is written as

Gab = Gacé)(tsaat;b)v (H'34)

where the indices s4, s = =+ in the right-hand side specifies if the time argument
belongs to the C'y or C_ branch, which (abusing notation) are encoded in the left-hand
side into the single particle indices a and b, which also encode the time arguments. In
this notation, an upper indices represents a particle that is annihilated (or out-going
states) and a lower index represent a particle that is created (or incoming state). In
this notation, the Dyson equation is written as

G% = (G, + (G")" V4G, + (G°)", 2%GY,, (H.35)

with repeated indices being summed over.

H.3 PERTURBATION THEORY, LANGRETH RULES AND KELDYSH EQUATION

Notice that Eq. H.29 contains some redundancy, as the different Green’s functions that
appear in it are not independent of each other, being related by Eqgs. (A.14)-(A.16). It
is possible to get rid of some of this redundancy by performing a transformation of the
form of

Gt t) = M7"- Gt 1) - N7 (H.36)

where in general the matrices M and NN are unrelated to each other and might not be
hermitian. We will refer to a transformation of the form of Eq. (H.36) a “covariant”
transformation. There is freedom in the choice of M and N, and consequently, on the
Green’s functions which are used. In the “covariant” notation previously introduced, a
transformation of the form of Eq. (H.36) is written as

Gy = (M) 6o (N,
()" = ) (@) (v, (HL38)

After the “covariant” transformation, the Dyson equation, Eq. (H.35), becomes

~ ~ a ~ a ~ ~ a - ~
Ga, = (GO) + (GO) VG, + (GO) G, (H.39)

with the single-particle potential and self-energy transforming as
Ve = NOVEMY, (H.40)
¥t = NOYXC, MY, (H.41)

Notice that the Dyson equation is only useful provided we have some scheme to
compute the self-energy. We will now focus on the case of fermions (c:rl, ¢q) coupled
linearly to a real bosonic field (¢4 )

Hint = Z %abclcbéﬁa, (H42)

a,b,a
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where 7,4 are coupling constants or bare interaction vertices. To lowest order in
the fermion-boson interaction, the Fock contribution to the fermion self-energy, in the
standard notation, reads

Zab(tsa, tsb) = Yaac ((7'3)5&,5C ch(tsca tsd)Da,B (tsca tsd) (03)5d75b YBdb; (H-43)

or in “covariant” notation
2%, = i, %G D%y, (H.44)

with the interaction vertices in “covariant” notation being related to the ones in the
standard notation by

Yoo = Yaab (Ug)sa’sb 5,5, (nO summation), (H.45)
Y = 0550 (Ug)smsb Yaab (O summation). (H.46)
Differently from the notation employed in the original work by Keldysh [255], the posi-
tion of the indices matters in the “covariant” notation we are employing. Furthermore,
we have made a distinction between the boson absorption vertex (with a lower boson
index) and the boson emission vertex (with an upper boson index) [57]. In the repre-
sentation where the Green’s function is given by Eq. (H.29), the interaction vertices in
the Keldysh indices are given by

10
a “+a
v o = ta , (H.47)
o= Y]
0 0
v = 74 = , H.48
b b 0 _1] (H.48)

with the absorption and emission vertices being equal. However, after a general “co-
variant” transformation, this is not the case. Under a “covariant” transformation, the
self-energy Eq. (H.44) transforms as

- o x = 84
29, = i4,%,G D7, (H.49)
with the interaction vertices transforming as
Tol = Ny MP MY (H.50)
7%9, = N9N%" M. (H.51)
Therefore, we see that in a “covariant” transformation, while the Green’s functions
change with M~! acting on the upper indices and N *1~ acting in the lower indices
(Egs. (H.37) and (H.38)), the single-particle potentials, V4, and interaction vertices,
v, and %, change with IV acting in the upper indices and M acting in the lower
indices.
There is a great freedom in the choice of M and N in Eq. (H.36). Some common
choices are:

H.3.0.1 RA < representation
Choosing M and N

<
I
| — |
—
Il o
—_
| I
=
I
| — |

10
: 1], (H.52)
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the Green’s function becomes (omitting the single particle indices and focusing only on
Keldysh indices)

GE(t,t) G<(t,t)
0 GA(t, 1)

, (H.53)

where it was used the fact that G4, (¢, ') = GT (t,t')+GT (t,t')—G> (t,t')—G<(t, ') = 0.
In this represenation, one chooses to work with the retarded, advanced and lesser
Green’s functions. When applying this “covariant” transformation to the Dyson equa-
tion and interaction vertices one obtains a set of rules of how to obtain retarded, ad-
vanced and lesser functions: the Langreth rules. In this representation, the single-
particle potential changes as

~ A A
ne ][] -
VY Vi 1
and the interaction vertices change as
o R T _
- ¥ v 1 0
ity = | Jr g | = ] , (1.55)
L Y%""r ®a] L0 1
e o] -
- v 0 0
= | A T = ] , (1.50)
L /A R A A | L I -1
“Ra &RRR :)/RRA - 1 0 057
’}/ b — ~RA ~RA - Y ( N )
LY R 74l L1100
o _ | TR M 10 ] (HL58)
I ;yAA ;?AAA | I 0 1

SR / SR / R / < /
Eab(t,t/) — E} R tvt) E} A t7t) — by (t’t) X (t7t) , (H59)
SARt ) B4, Y) 0 SA(L, 1)
with
SR, t') =iG=<(t,t"\DE(t,t') +iGR(t,t')D=(t,t')
+iGE(t, ) DR(t, 1), (H.60)
SAt ) = iG<(t, ) DA, ) +iGA(t, 1) D= (t, 1)
—iGA(t,t DAL, 1), (H.61)
YS(t,t) =G (L, t')D<(t,t), (H.62)

and Y45t 1) = GE(t,t") DAL, ') + GA(t,t')DE(t,#') = 0, since a retarded function
is only non-zero for ¢ > ¢’ and a advanced function is only non-zero for ¢ < ¢'. More
generically, the fact that¥4,(t,¢') is zero, is inherited from the fact that G4, (t,t)
is also zero. Equations (H.60)-(H.62) are the Langreth rules for the product of two
Green’s functions.
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In this representation, the Dyson equation, Eq. (H.35), becomes (omitting time ar-
guments)

[ GR G< ] [ GO’R GO’< ]

0 G4 0 G°4
N G G| |V 0| | G GT
0 G4 0 Vv 0 GA
0,R 0,< R < R <
N G G =< | | GR @ (H.63)
0 G4 0 x4 0 GA

From this equation, we obtain the Dyson equation for the retarded and advanced
Green’s functions as

Gf=c""+@"".v.G"+G". =% G, (H.64)
G'=G"+c"" . v.g'+G" 4. G (H.65)

The equation for the Lesser Green’s function, becomes

G =G"“+G"~.V.G*+G".Vv.G*

+GY. 2. g+ G . 2. ¢+ GO 2 G (H.66)
Notice the structure of the previous equation: the lesser component of a string of
convoluted two time quantities (Cy - ... - Cy)~ is given by
N
(Ci-..-Cy)<=> Cf-...cl,.cy-cl .. Cy. (H.67)
n=1

This is a consequence of the upper triangular form of Green’s function Eq. (H.53) and
self-energies Eq. (H.59) and the diagonal form of the single-particle potential Eq. (H.54)
in Keldysh space. Employing the Dyson equation for the retarded and advanced Green’s
functions, Egs. (H.64) and (H.65), into Eq. (H.66), we obtain

G<=GH. (""" .q" (") .gt+ Gl =< g (H.68)

For a non-interacting Hamiltonian it is easy to see that
GO (t,t") = GOE(t,t0) GO (to, 1) G (to, '), for t,t’ > t. (H.69)

Using this result, Eq. (H.68) can be written as (including again the time arguments)
G=(t,t") = GT(t, t0) GO (to, t0) G (to, 1).
+oo +oo
+/ dtl/ dtoGT(t, 1) 2 (t1, t2)GA(t, ). (H.70)
—0oQ —o

The first term of the above equation describes the memory of the initial state. Provided
the retarded and advanced Green’s function go to zero as the separation of the time
arguments goes to infinity (as it should happen in the presence of interactions or an
external bath), then in the limit of ¢,#' > tg, the previous equation reduces to

—+00 +o0
G<(t,t’):/ dtl/ dtoGT(t,11) 2 (t1, t2) G (ta, 1), (H.71)

which is the Keldysh equation for the lesser Green’s function.
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H.3.0.2 RA > representation
Choosing M and N as

o U R (H.72)
0 1 0 -1
the Green’s function becomes
A / A / A /
Ge (6.1 GA 1) GARtt) | _ | GAY) 0 (11.73)
RA(t’ t,) GRR(tv t/) G~ (ta t,) GR(ta t,)
The single-particle potentials change as
~ A A
e — VRA VRR _ [ 1 ] , (H.74)
Ve v 1
and the interaction vertices change as
[~ A ;A
- v v 11
Ya% = NARA NARR ] = [ ] ; (H.75)
L Ya"4 YA’ R 0 0
[~ A s A
- 10
YR = 7RRA YRRR ] = [ ] ) (H.76)
L "TRRaa TR R 01
saa _ | 7 A ] _ [ 10 ] (H.77)
i ’?ARA :YARR 0 1
[~ A z 4
- 0 1
= | Tra Tn ] - [ ] (1.75)
L "R A TR R 0 -1
With these interaction vertices, the self-energy is given by
N A / A / A /
BEL ) BRR(LY) 22 () BT
with
SA@ ) = iG> (8, ) DAt, ) +iGA(L, ) D (¢, 1)
+iGA(t, " DA(t, 1), (H.80)
SR, 1) = iG> (t,t")DE(t, V') +iGR(t,t') D (t,1')
—iGR(t,t)DE(t, 1), (H.81)
Y7 (t,t') =iG” (t,t') D (t,t) (H.82)
Using the fact that GT(t,¢)DA(t,t') = 0 = GA(t,#')DE(t,t') and Eq. (A.16), it can
be seen that Egs. (H.80) and (H.81) are equivalent to Eqgs. (H.60) and (H.61), which

can be written as

SRt t') =iG=<(t,t")DE(t, ') +iGE(t,t') D> (t,t') (H.83)
= iG” (t,t")DE(t, ') +iGR(t,t')D=(t,1"), (H.84)
SAt, 1) = iG<(t, ") DA(t,t') +iGA(t, 1) D> (t,t') (H.85)
= iG” (t,t)DA(L, V') + iGA(t, t') D= (t,t'). (H.86)
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From these relations it can also be seen that

=iG” (t,t') (DR (t,t') — DAL, 1)) +i (G"(t,t) — G(
D><t,t/) _ D<<t,t/ ) 44 (G>(t,t/) _ G<(
=iG” (t,t")D” (t,t') —iG=(t,t')D<(t,t)

=7 () - X<, t), (H.87)

|

~

Q

\4

~—~ o~
“PF

~

~

~—
—

which is a direct consequence of the relation for the Green’s functions G — G4 =
G~ — G=<, Eq. (A.16).
The Dyson equation in this representation reads

GY 0| |G o0 N
G~ GR o GO,> GO,R

G 0 | |V o] |G* 0
* G*> GOHE 0V G~ GE
G4 0 >4 0 GY 0
0 0.R R | R |’ (H.88)
G>> GY% DIy G> G

from which we can obtain the Dyson equations for the retarded and advanced Green’s
function, Eqs. (H.64) and (H.65), and the equation for the greater Green’s function

G (t,t') = G (t,t0)G" (to, t0) G (to, ).

+oo +oo
w[ Tan [T anGte s w6 ), ()
—00 —00
which for a system that loses memory and in the limit of ¢, > tg, reduces
“+o0o +0o0
G~ (t,t) = / dt, / dtyGE(t, 1)) 57 (t1, t2) GA (Lo, 1), (H.90)
—00 —00

which is the Keldysh equation for the greater Green’s function.



THOMAS-FERMI THEORY FOR LAYERED MATERIALS

We wish to model the charging of a multilayer system when a gate voltage, Vgate, is
applied to it. We also allow for a bias voltage, Viias, to be applied between the top
and bottom layers. The layered structure is on top of a dielectric spacer separating the
structure from a metallic back gate, typically a highly doped Si layer. We treat each
layer in the structure as a 2D film with a 2D charge density given by pg, £ = —1,..., N'+1,
where ¢ = —1 indexes the metallic gate, and £ = 0 to N/ + 1 labels the layers of the
actual structure. Layers £ — 1 and ¢ are separated by a distance dy and we assume
that this region is filled with a dielectric with relative constant along the z direction
given by given by €,. Essentially, we will model the layered structure as a multilayer
capacitor. The structure we are considering is represented in Fig. I.1. Applying Gauss’s
law around each plate and assuming charge neutrality, Zé\;_l pe = 0, we obtain

€oEo = p-1/¢o-
€r1Eop1 — &By = pefeo, £ =0,.., N,
—en+1EN 1 = pa+1/ €0,

where Ej is the electric field along the z direction between layers £ — 1 and £, and ¢ is
vacuum’s permittivity. From these equations we can write

{—1
1
QE@:: E P, £ =0, N +1, (1.4)
0
k=-1

and the stored electrostatic energy is given by

N+1
Usm = Y =eode€rE}
EM Z 260 0€0 Ly
(=0
1 N+1 min(¢,¢") d
k
= — — / 15
5 pe| D el L2 (1.5)
£,0'=0 k=0

where we have used the charge neutrality condition in order to eliminate the charge in
the Si gate, p_1. This is nothing more than the Hartree energy for a layered material.
We split the charge density of each layer into a contribution from charge carriers and
another from charged impurities, py = —eny + enigmp, where ny is the charge carrier
concentration (ny > 0 for electron doping) and niemp is the concentration of charged
impurities (nigmp > 0 for positively charged impurities). Including the effects of a
gate voltage, Vgate, applied between the £ = —1 and the ¢ = 0 layers and a bias voltage
between the £ = A +1and the £ = 0 layers, we obtain a Thomas-Fermi energy functional

1 N4+1 min(¢,¢) 62dk N+1 )
— _ 1mp
P (Dol PR S
£,0'=1 k=0 =0
N+1 N+1 ),
— BVgate ; Ny + eVbiaS ; m”g, (:[6)
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A
z | N+1
EN+1 dn+1
N -
EN, T Vbias
1 Z
€1 dq
0 I||
€0 d()
-1 —
metal gate Viate

Figure I.1: Schematic representation of the multilayer capacitor model that is used to model
electrostatic doping of layered materials.

where
N+1min(4,0")

1Inp ZZ

is the potential created by the charged impurities. The Hartree potential felt by elec-
trons in layer £ is given by

2
dk 1In

6Oﬁks

P, (L7)

0P
H —_
Vit = ony

14
gate — Vbias N+ 1”@ + e¢1mp

N41 [min(£e)

— Z Z % ng/,fzo,...,./\/’-f- 1. (18)

€nE
=0 \ k=0 Ok

Now, we assume that the vertical current flowing between the 1 and the N + 1 layers
is small, such that we can assume that these layers are in a near equilibrium state.
Furthermore, we employ the Thomas-Fermi approximation, in which the local Fermi
level for each layer is given by epy = VZH , where gy = €y (ng) is a function of the local
carrier density. The local relation ep/ (n) together with Eq. (I.8) give us a system of
non-linear equations, which must be solved to obtain the carrier density / local Fermi
level for each layer.

We will be interested in a system where the layers £ = 0 and ¢ = N + 1 are graphene
layers and the remaining layers, £ = 1, ..., are formed by the insulating material hBN.
It can be checked, that due to the large band gap of hBN, most charge density will be
accumulated in the graphene layers. As such it is a good approximation to set ny, = 0,
for £ =1,..., N and therefore the N+ 2 equations in Eq. (I.8) are reduced to two

€Fbg = eVgate - (nbg + ntg) Ct_l + B(Z)ibnglp, (19)

€rtg = Vaate — €Vhias — nigCp = Ot + ey, (1.10)
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where the capacitances are given by (taking into account the series capacitances of a
hBN/SiOq spacer between the ¢ = 0 graphene layer and the Si gate, with dygn the
hBN thickness and dgio,the SiO2 thickness)

2 2 2
e“dy  e*dsio, = e“dnBN

Cil=—=— + — (L.11)
€0€0  €0€si0,  €0€hBN
NAL 2 2 2 2
_ e“dy  e“dsio e“dpBN e“d
Otlzz L2 0 PR, — 7 (1.12)
—o €0€L €0€si0;  €0€hBN  €0€hBN

and d is the distance between the two graphene layers. The terms egbggf’tg are the

potentials induced by the charged impurities in the bottom/top graphene layer that
can be tuned to account for intrinsic doping of the graphene layers (acting as an offset
in Vgate and Vijas).

We finally point out that in the case where the hBN layers have no charge carriers,
then the Hartree potential within the hBN slab is given from Eq. (I.8) in terms of

€Fbg/tg 85
H _ imp imp
Vit = €rg —edyg e,

¢ . .
— ./\/.7_’_1 <€F7tg + €Vbias — €F,bg — €¢ggﬂp + €¢g§p) s (113)

which in the absence of charged impurities reduces to

l
VeH = €Ftg — m (€F,tg + eVhias — 6F,bg) ) (I~14)
as stated in Section (6.4). For pristine graphene, the electronic density is related to the
Fermi energy by

epe = sgn (ng) vphn/m [ny. (I.15)

The solution of Eqs (1.9)-(1.10) together with Eq. (I.15) for e€pps and €pyy are shown
to a particular device in Fig. 6.2.
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ANALYTIC EXPRESSION FOR TDOS OF SECTION 6.5

In this appendix we provide an analytic expression for the quantity TDoS,, y, (whg, Wig)
Eq. (6.103), of Section 6.5. In the limit of infinite lifetime for graphene electrons, the
spectral functions of Eq. (6.103) reduce to J-functions and it is possible to perform
the integration over momentum analytically. In the presence of a finite, momentum
independent, lifetime, it is still possible to find an approximate analytical expression
to Eq. (6.103). First we notice that the spectral functions in the sublattice basis can
be written as

Apg/igr(w) =1 [Gﬁebg/tg (whg/tg) — Gévebg/tg (wbg/tg)] ’ (J.1)
with the Green’s functions reading

wEId + vphk - o

GEA (W) = : J.2
<0 ) T (R o

with w* = w =+ 77, with « the broadening factor and
o9 = (cos o, — sinfoy,sinfo, + cos o). (J.3)

For convenience, we will write Gy g (wF) = GEQA (w). Equation (6.103) can then be
recast as

TDoS,, m (Whe, Weg) Z / 555 tr G, B2 (Wf;g) -J-
s,8'==%1

'Gk+gn,m76tg+m2?ﬂ (wgg) ’ J:| ) (J4)

where tr{...} is the trace over graphene sublattice indices, and J is a 2 x 2 matrix of
ones. Performing the trace over the sublattice degrees of freedom we obtain

TDoSp m (Whg, Weg) Z /

s,8'==%1
2 (wp + vl Kbg,n) 2 (wil + o (k+ Qum) - Kigm) -
X . .
(w5,) — pm? kP (5)" = ER) e+ Qunf

This form is completely equivalent to Eq. (6.103). Its advantage lies in the fact that
is is clearly analytic in k (is does not involve terms like \/@) and as such, contour
integration methods can be used to perform the integration.

In order to make analytic progress, in the first term of the previous expression we
take the limit 4, — 0, such that wglg — Whg = W + €F bg and

; Z < ‘|‘ vphk - Kbg n 27‘(‘ng +vphk - Kbgn

’ Z 50 (wpg — svph |k|). (J.6)
T (wbg) — (vph)? k]2 2orh k] &
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We use the d-function to perform the integration over |k|, obtaining

. Whe / by [ wog + vrhk - Kygn
TDoS;,.m (Whe, Wie) 22 1 —
’ ( bg tg) (UFh)Q 27T UFh |k‘

“"bg|

k=5

12 (wﬁé +vrh (k + Qn,m) . th,m)
S
s\ 2
s'==+1 (wtg) - (UFh)2 |k + Qn,m|2

% (J.7)

The remaining integration over the angular variable 6y can be performed using contour
integration methods. We perform a change of variables z = e’ such that

do dz 1
Tk 7{ £ (J.8)
27 \z|:1 21 2
—1
cos O = z +2z , (J.9)
-1
sinfy = = 2? , (J.10)
1
and we can write
NS z4+ 271 4 z—2z71 5y
k- Kbg/tg,n = 9 K]fg/tg,n + % bg/tg,n’ (Jll)
[k + Quml* = [kI* +Qum[”
-1 -1
+ 2 k| |Qnml <Z+Z cosfg,  + z 2',2 sinﬁgnm) ) (J.12)
, i ,

with g, . the angle of the vector Q,, ;,, with the reference z axis. The integrand has

a double pole at z = 0 and two simple poles at z = e'02m.n w;tg, where w%tg is given
by

WS g = Cig F Sty (J.13)
(wig + 5irts)” = () (1Qnml” + KI?)
tg — 2 (0rh) | Qo] K| ; (J.14)
v = sen (wh — 9% — )’ (1Quml® + K1) ) iy/ ()" 1, (3.15)
and is defined such that |w< | < 1 and ws e = w;ltg. The contour integration

around the unit circle can be performed analytically by collecting the residues at z =
eW+enm w i, and z = 0. Notice that we have made the approximation 7, — 0. In
general, both ypg and ~;, will be non-zero. The simplest way to take this into account
is to symmetrize Eq. (J.5) with respect to the bottom and the top graphene layers and
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then taking the limit 41, — 0 in the first term and <tz — 0 in the second. The final
symmetrized result is given by

Whg
T3~ X
(vrh)” [Qnml

1 (et el (G X+ SiYith ) +0rh Qo - Kugin

TDoSp,m(Whg, Weg) =

X —_— X
11 ng |whe
s ng S ng
Whg + |ng| tg<Xn,m T Otgnm
X
|wng|
+
2’Ytg (Xrlz%n + ZYrB%n) vrh ‘ Qmm‘ + wig (X:L%m + ZY?%?m)
UFh‘Qn,m| |ng‘ Kl= |ng|
M=ty

(1w > g, XDEE — —XPEIE YPEIE  _yDRE) - (].16)
where we have we have introduced the quantities

b A > b ~ >
Xn,gm = Qn,m ' Kbg,n, Yn,;gn = Qn,m X Kbg,ru

- - P ; (J.17)
Xn,m = Qn,m . th,my Yn,m = Qn,m X th,ma

and the quantities Ctﬂé and Stﬁé given by Egs. (J.14) and (J.15) with the replacements
Wig — whg and Ytg — Ybg. It was checked that Eq. (J.16) provides a very good approx-
imation to the numeric evaluation of Eq. (J.5) when both 1, and 7t, are non-zero, if
the broadening function for each layer is assumed to the the sum of the broadening
factors of both layers, i.e., performing the replacement yug, Vtg — Ybg + Vtg-

In the limit of infinite electron lifetime in both layers v,q/¢, — 0, we obtain

2 2
s wt2g - wgg - (UFh) ’Qn,m’

B 2(vph) |Quml lwrgl

= —ssenleng)y/1- (C)" (7.19)

and Sgg/ng are obtained by replacing wpg — wie. In this case, TDoS;, 1, (whg, wig)
simplifies to

(J.18)

wtg
3— ><
(th) ’Qmm’
wtg + |wbg| (C%X:lgm + S%Y,f%) + UFhQn,m : thnn

—1 s s
XZSj X

s—+1 “tg |whel

TDOSn,m (wbga wtg) =

g + [eong] (Cop X + SVl )

X (J.20)
[
We notice that in this limit, TDoS,, y,(whg, wtg) is only non-zero when
2
4 @rh)? | Qunl* why > (wly = wiy = (06h)* | Quanl”) (3.21)
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We finally study how the effect of the spinorial character of graphene’s wavefunction
manifests in the form of TDoS,, y, (whg, wig). If we set the wavefunction overlap factors

Tbg/tg’ to 1 in Eq. (6.103), then instead of Eq. (J.5) we would obtain

S
Zwbg

2
TDoSS8T (s wig) = 42 Z Ik ss’ X
n,m bgs tg - 2

2
s,8'==1 ( bg) —(Uph)2‘k’2
2ws,
X — e 5. (J.22)
(wtsg) — (vrh)” [k + Qnm|

In order to evaluate TDOS;C,%ILM(wbg, Wig), we proceed as previously. the only difference
is that when performing the integration over the unit circle in the complex variable
z, there is no double pole at z = 0, and the contour integration only collects the
contribution from z = e%+Qmn s Symmetrizing the result, this leads to

(g "Jtz> n (wb_g _ °"b+g>
+ — +
St Se S

These analytical expressions lead to a significant speed up in the evaluation of the
current in Chapter 6.

<,tg/bg’

;1
(vrh)* |Qnm] 2

TDOS%C,?}ILar(ng, Wig) = (J.23)
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